MotorControlModuleSDFM_TMS3.../Projects/mem_test/device/device.c

534 lines
18 KiB
C

//#############################################################################
//
// FILE: device.c
//
// TITLE: Device setup for examples.
//
//#############################################################################
//
//
// $Copyright:
// Copyright (C) 2022 Texas Instruments Incorporated - http://www.ti.com
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions
// are met:
//
// Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//
// Redistributions in binary form must reproduce the above copyright
// notice, this list of conditions and the following disclaimer in the
// documentation and/or other materials provided with the
// distribution.
//
// Neither the name of Texas Instruments Incorporated nor the names of
// its contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// $
//#############################################################################
//
// Included Files
//
#include "device.h"
#ifdef CMDTOOL
#include "device_cmd.h"
#endif
//*****************************************************************************
//
// Function to initialize the device. Primarily initializes system control to a
// known state by disabling the watchdog, setting up the SYSCLKOUT frequency,
// and enabling the clocks to the peripherals.
//
//*****************************************************************************
void Device_init(void)
{
//
// Disable the watchdog
//
SysCtl_disableWatchdog();
#ifdef CMDTOOL
CMD_init();
#endif
#ifdef _FLASH
#ifndef CMDTOOL
//
// Copy time critical code and flash setup code to RAM. This includes the
// following functions: InitFlash();
//
// The RamfuncsLoadStart, RamfuncsLoadSize, and RamfuncsRunStart symbols
// are created by the linker. Refer to the device .cmd file.
//
memcpy(&RamfuncsRunStart, &RamfuncsLoadStart, (size_t)&RamfuncsLoadSize);
#endif
//
// Call Flash Initialization to setup flash waitstates. This function must
// reside in RAM.
//
Flash_initModule(FLASH0CTRL_BASE, FLASH0ECC_BASE, DEVICE_FLASH_WAITSTATES);
#endif
#ifdef CPU1
//
// Verify the crystal frequency.
// Note: This check can be removed if you are not using XTAL as the PLL
// source
//
if( ((DEVICE_SETCLOCK_CFG & SYSCTL_OSCSRC_M) == SYSCTL_OSCSRC_XTAL) ||
((DEVICE_SETCLOCK_CFG & SYSCTL_OSCSRC_M) == SYSCTL_OSCSRC_XTAL_SE))
{
if(!Device_verifyXTAL(DEVICE_OSCSRC_FREQ / 1000000))
{
//
// The actual XTAL frequency does not match DEVICE_OSCSRC_FREQ!!
// Please check the XTAL frequency used.
//
// By default, the Device_init function assumes 25MHz XTAL.
// If a 20MHz crystal is used, please add a predefined symbol
// "USE_20MHZ_XTAL" in your CCS project.
// If a different XTAL is used, please update the DEVICE_SETCLOCK_CFG
// macro accordingly.
//
// Note that the latest F2838x controlCARDs (Rev.B and later) have been
// updated to use 25MHz XTAL by default. If you have an older 20MHz XTAL
// controlCARD (E1, E2, or Rev.A), refer to the controlCARD
// documentation on steps to reconfigure the controlCARD from 20MHz to
// 25MHz.
//
ESTOP0;
while(1);
}
}
//
// Set up PLL control and clock dividers
//
SysCtl_setClock(DEVICE_SETCLOCK_CFG);
//
// Make sure the LSPCLK divider is set to the default (divide by 4)
//
SysCtl_setLowSpeedClock(SYSCTL_LSPCLK_PRESCALE_4);
//
// Set up AUXPLL control and clock dividers needed for CMCLK
//
SysCtl_setAuxClock(DEVICE_AUXSETCLOCK_CFG);
//
// Set up CMCLK to use AUXPLL as the clock source and set the
// clock divider to 1.
//
SysCtl_setCMClk(SYSCTL_CMCLKOUT_DIV_1,SYSCTL_SOURCE_AUXPLL);
// These asserts will check that the #defines for the clock rates in
// device.h match the actual rates that have been configured. If they do
// not match, check that the calculations of DEVICE_SYSCLK_FREQ,
// DEVICE_LSPCLK_FREQ and DEVICE_AUXCLK_FREQ are accurate. Some
// examples will not perform as expected if these are not correct.
//
ASSERT(SysCtl_getClock(DEVICE_OSCSRC_FREQ) == DEVICE_SYSCLK_FREQ);
ASSERT(SysCtl_getLowSpeedClock(DEVICE_OSCSRC_FREQ) == DEVICE_LSPCLK_FREQ);
ASSERT(SysCtl_getAuxClock(DEVICE_OSCSRC_FREQ) == DEVICE_AUXCLK_FREQ);
#ifndef _FLASH
//
// Call Device_cal function when run using debugger
// This function is called as part of the Boot code. The function is called
// in the Device_init function since during debug time resets, the boot code
// will not be executed and the gel script will reinitialize all the
// registers and the calibrated values will be lost.
// Sysctl_deviceCal is a wrapper function for Device_Cal
//
SysCtl_deviceCal();
#endif
#endif
//
// Turn on all peripherals
//
Device_enableAllPeripherals();
Device_initGPIO();
}
#ifdef CPU1
//*****************************************************************************
//
// Function to boot CPU2
// Available bootmodes :
// - BOOTMODE_BOOT_TO_FLASH_SECTOR0
// - BOOTMODE_BOOT_TO_FLASH_SECTOR4
// - BOOTMODE_BOOT_TO_FLASH_SECTOR8
// - BOOTMODE_BOOT_TO_FLASH_SECTOR13
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR0
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR4
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR8
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR13
// - BOOTMODE_IPC_MSGRAM_COPY_BOOT_TO_M1RAM
// - BOOTMODE_BOOT_TO_M0RAM
// - BOOTMODE_BOOT_TO_USEROTP
//
// Note that while using BOOTMODE_IPC_MSGRAM_COPY_BOOT_TO_M1RAM,
// BOOTMODE_IPC_MSGRAM_COPY_LENGTH_xxxW must be ORed with the bootmode parameter
//
// This function must be called after Device_init function
//
//*****************************************************************************
void Device_bootCPU2(uint32_t bootmode)
{
//
// Configure the CPU1TOCPU2IPCBOOTMODE register
//
IPC_setBootMode(IPC_CPU1_L_CPU2_R,
(BOOT_KEY | CPU2_BOOT_FREQ_200MHZ | bootmode));
//
// Set IPC Flag 0
//
IPC_setFlagLtoR(IPC_CPU1_L_CPU2_R, IPC_FLAG0);
//
// Bring CPU2 out of reset. Wait for CPU2 to go out of reset.
//
SysCtl_controlCPU2Reset(SYSCTL_CORE_DEACTIVE);
while(SysCtl_isCPU2Reset() == 0x1U);
}
//*****************************************************************************
//
// Function to boot CM
// Available bootmodes :
// - BOOTMODE_BOOT_TO_FLASH_SECTOR0
// - BOOTMODE_BOOT_TO_FLASH_SECTOR4
// - BOOTMODE_BOOT_TO_FLASH_SECTOR8
// - BOOTMODE_BOOT_TO_FLASH_SECTOR13
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR0
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR4
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR8
// - BOOTMODE_BOOT_TO_SECURE_FLASH_SECTOR13
// - BOOTMODE_IPC_MSGRAM_COPY_BOOT_TO_S0RAM
// - BOOTMODE_BOOT_TO_S0RAM
// - BOOTMODE_BOOT_TO_USEROTP
//
// Note that while using BOOTMODE_IPC_MSGRAM_COPY_BOOT_TO_M1RAM,
// BOOTMODE_IPC_MSGRAM_COPY_LENGTH_xxxW must be ORed with the bootmode parameter
//
// This function must be called after Device_init function
//
//*****************************************************************************
void Device_bootCM(uint32_t bootmode)
{
//
// Configure the CPU1TOCMIPCBOOTMODE register
//
IPC_setBootMode(IPC_CPU1_L_CM_R,
(BOOT_KEY | CM_BOOT_FREQ_125MHZ | bootmode));
//
// Set IPC Flag 0
//
IPC_setFlagLtoR(IPC_CPU1_L_CM_R, IPC_FLAG0);
//
// Bring CM out of reset. Wait for CM to go out of reset.
//
SysCtl_controlCMReset(SYSCTL_CORE_DEACTIVE);
while(SysCtl_isCMReset() == 0x1U);
}
#endif
//*****************************************************************************
//
// Function to turn on all peripherals, enabling reads and writes to the
// peripherals' registers.
//
// Note that to reduce power, unused peripherals should be disabled.
//
//*****************************************************************************
void Device_enableAllPeripherals(void)
{
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLA1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DMA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_TIMER0);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_TIMER1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_TIMER2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CPUBGCRC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLA1BGCRC);
#ifdef CPU1
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_HRCAL);
#endif
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_TBCLKSYNC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ERAD);
#ifdef CPU1
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EMIF1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EMIF2);
#endif
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM3);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM4);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM5);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM6);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM7);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM8);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM9);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM10);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM11);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM12);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM13);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM14);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM15);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EPWM16);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP3);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP4);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP5);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP6);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAP7);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EQEP1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EQEP2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_EQEP3);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SD1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SD2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SCIA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SCIB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SCIC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SCID);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SPIA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SPIB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SPIC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_SPID);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_I2CA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_I2CB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CANA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CANB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_MCBSPA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_MCBSPB);
#ifdef CPU1
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_USBA);
#endif
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ADCA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ADCB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ADCC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ADCD);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS3);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS4);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS5);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS6);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS7);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CMPSS8);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DACA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DACB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DACC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB3);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB4);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB5);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB6);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB7);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_CLB8);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSITXA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSITXB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXA);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXB);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXC);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXD);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXE);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXF);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXG);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_FSIRXH);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_PMBUSA);
#ifdef CPU1
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DCC0);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DCC1);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DCC2);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_ECAT);
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_MCANA);
#endif
}
//*****************************************************************************
//
// Function to disable pin locks on GPIOs.
//
//*****************************************************************************
void Device_initGPIO(void)
{
//
// Disable pin locks.
//
GPIO_unlockPortConfig(GPIO_PORT_A, 0xFFFFFFFF);
GPIO_unlockPortConfig(GPIO_PORT_B, 0xFFFFFFFF);
GPIO_unlockPortConfig(GPIO_PORT_C, 0xFFFFFFFF);
GPIO_unlockPortConfig(GPIO_PORT_D, 0xFFFFFFFF);
GPIO_unlockPortConfig(GPIO_PORT_E, 0xFFFFFFFF);
GPIO_unlockPortConfig(GPIO_PORT_F, 0xFFFFFFFF);
//
// Enable GPIO Pullups
//
Device_enableUnbondedGPIOPullups();
}
//*****************************************************************************
//
// Function to enable pullups for the unbonded GPIOs on the 176PTP package:
// GPIOs Grp Bits
// 95-132 C 31
// D 31:0
// E 4:0
// 134-168 E 31:6
// F 8:0
//
//*****************************************************************************
void Device_enableUnbondedGPIOPullupsFor176Pin(void)
{
EALLOW;
HWREG(GPIOCTRL_BASE + GPIO_O_GPCPUD) = ~0x80000000U;
HWREG(GPIOCTRL_BASE + GPIO_O_GPDPUD) = ~0xFFFFFFF7U;
HWREG(GPIOCTRL_BASE + GPIO_O_GPEPUD) = ~0xFFFFFFDFU;
HWREG(GPIOCTRL_BASE + GPIO_O_GPFPUD) = ~0x000001FFU;
EDIS;
}
//*****************************************************************************
//
// Function to enable pullups for the unbonded GPIOs on the
// 176PTP package.
//
//*****************************************************************************
void Device_enableUnbondedGPIOPullups(void)
{
//
// bits 8-10 have pin count
//
uint16_t pinCount = ((HWREG(DEVCFG_BASE + SYSCTL_O_PARTIDL) &
(uint32_t)SYSCTL_PARTIDL_PIN_COUNT_M) >>
SYSCTL_PARTIDL_PIN_COUNT_S);
/*
* 6 = 176 pin
* 7 = 337 pin
*/
if (pinCount == 6)
{
Device_enableUnbondedGPIOPullupsFor176Pin();
}
else
{
//
// Do nothing - this is 337 pin package
//
}
}
//*****************************************************************************
//
// Function to verify the XTAL frequency
// freq is the XTAL frequency in MHz
// The function return true if the the actual XTAL frequency matches with the
// input value
//
// Note that this function assumes that the PLL is not already configured and
// hence uses SysClk freq = 10MHz for DCC calculation
//
//*****************************************************************************
#ifdef CPU1
bool Device_verifyXTAL(float freq)
{
//
// Use DCC to verify the XTAL frequency using INTOSC2 as reference clock
//
//
// Enable DCC0 clock
//
SysCtl_enablePeripheral(SYSCTL_PERIPH_CLK_DCC0);
//
// Insert atleast 5 cycles delay after enabling the peripheral clock
//
asm(" RPT #5 || NOP");
//
// Configures XTAL as CLKSRC0 and INTOSC2 as CLKSRC1
// Fclk0 = XTAL frequency (input parameter)
// Fclk1 = INTOSC2 frequency = 10MHz
//
// Configuring DCC error tolerance of +/-1%
// INTOSC2 can have a variance in frequency of +/-10%
//
// Assuming PLL is not already configured, SysClk freq = 10MHz
//
// Note : Update the tolerance and INTOSC2 frequency variance as necessary.
//
return (DCC_verifyClockFrequency(DCC0_BASE,
DCC_COUNT1SRC_INTOSC2, 10.0F,
DCC_COUNT0SRC_XTAL, freq,
1.0F, 10.0F, 10.0F));
}
#endif
//*****************************************************************************
//
// Error handling function to be called when an ASSERT is violated
//
//*****************************************************************************
void __error__(const char *filename, uint32_t line)
{
//
// An ASSERT condition was evaluated as false. You can use the filename and
// line parameters to determine what went wrong.
//
ESTOP0;
}