fmt/test/scan.h
2024-02-04 08:07:00 -08:00

656 lines
18 KiB
C++

// Formatting library for C++ - scanning API proof of concept
//
// Copyright (c) 2019 - present, Victor Zverovich
// All rights reserved.
//
// For the license information refer to format.h.
#include <array>
#include <cassert>
#include <climits>
#include <tuple>
#include "fmt/format-inl.h"
FMT_BEGIN_NAMESPACE
namespace detail {
inline auto is_whitespace(char c) -> bool { return c == ' ' || c == '\n'; }
// If c is a hex digit returns its numeric value, otherwise -1.
inline auto to_hex_digit(char c) -> int {
if (c >= '0' && c <= '9') return c - '0';
if (c >= 'a' && c <= 'f') return c - 'a' + 10;
if (c >= 'A' && c <= 'F') return c - 'A' + 10;
return -1;
}
struct maybe_contiguous_range {
const char* begin;
const char* end;
explicit operator bool() const { return begin != nullptr; }
};
class scan_buffer {
private:
const char* ptr_;
const char* end_;
bool contiguous_;
protected:
scan_buffer(const char* ptr, const char* end, bool contiguous)
: ptr_(ptr), end_(end), contiguous_(contiguous) {}
~scan_buffer() = default;
void set(span<const char> buf) {
ptr_ = buf.data;
end_ = buf.data + buf.size;
}
auto ptr() const -> const char* { return ptr_; }
public:
scan_buffer(const scan_buffer&) = delete;
void operator=(const scan_buffer&) = delete;
// Fills the buffer with more input if available.
virtual void consume() = 0;
class sentinel {};
class iterator {
private:
const char** ptr_;
scan_buffer* buf_; // This could be merged with ptr_.
char value_;
static auto get_sentinel() -> const char** {
static const char* ptr = nullptr;
return &ptr;
}
friend class scan_buffer;
friend auto operator==(iterator lhs, sentinel) -> bool {
return *lhs.ptr_ == nullptr;
}
friend auto operator!=(iterator lhs, sentinel) -> bool {
return *lhs.ptr_ != nullptr;
}
iterator(scan_buffer* buf) : buf_(buf) {
if (buf->ptr_ == buf->end_) {
ptr_ = get_sentinel();
return;
}
ptr_ = &buf->ptr_;
value_ = *buf->ptr_;
}
friend scan_buffer& get_buffer(iterator it) { return *it.buf_; }
public:
iterator() : ptr_(get_sentinel()), buf_(nullptr) {}
auto operator++() -> iterator& {
if (!buf_->try_consume()) ptr_ = get_sentinel();
value_ = *buf_->ptr_;
return *this;
}
auto operator++(int) -> iterator {
iterator copy = *this;
++*this;
return copy;
}
auto operator*() const -> char { return value_; }
auto base() const -> const char* { return buf_->ptr_; }
friend auto to_contiguous(iterator it) -> maybe_contiguous_range;
friend auto advance(iterator it, size_t n) -> iterator;
};
friend auto to_contiguous(iterator it) -> maybe_contiguous_range {
if (it.buf_->is_contiguous()) return {it.buf_->ptr_, it.buf_->end_};
return {nullptr, nullptr};
}
friend auto advance(iterator it, size_t n) -> iterator {
FMT_ASSERT(it.buf_->is_contiguous(), "");
const char*& ptr = it.buf_->ptr_;
ptr += n;
it.value_ = *ptr;
if (ptr == it.buf_->end_) it.ptr_ = iterator::get_sentinel();
return it;
}
auto begin() -> iterator { return this; }
auto end() -> sentinel { return {}; }
auto is_contiguous() const -> bool { return contiguous_; }
// Tries consuming a single code unit. Returns true iff there is more input.
auto try_consume() -> bool {
FMT_ASSERT(ptr_ != end_, "");
++ptr_;
if (ptr_ != end_) return true;
consume();
return ptr_ != end_;
}
};
using scan_iterator = scan_buffer::iterator;
using scan_sentinel = scan_buffer::sentinel;
class string_scan_buffer : public scan_buffer {
private:
void consume() override {}
public:
explicit string_scan_buffer(string_view s)
: scan_buffer(s.begin(), s.end(), true) {}
};
class file_scan_buffer : public scan_buffer {
private:
template <typename F, FMT_ENABLE_IF(sizeof(F::_IO_read_ptr) != 0)>
static auto get_file(F* f, int) -> glibc_file<F> {
return f;
}
template <typename F, FMT_ENABLE_IF(sizeof(F::_p) != 0)>
static auto get_file(F* f, int) -> apple_file<F> {
return f;
}
static auto get_file(FILE* f, ...) -> fallback_file<FILE> { return f; }
decltype(get_file(static_cast<FILE*>(nullptr), 0)) file_;
// Fills the buffer if it is empty.
void fill() {
span<const char> buf = file_.get_read_buffer();
if (buf.size == 0) {
int c = file_.get();
// Put the character back since we are only filling the buffer.
if (c != EOF) file_.unget(static_cast<char>(c));
buf = file_.get_read_buffer();
}
set(buf);
}
void consume() override {
// Consume the current buffer content.
size_t n = to_unsigned(ptr() - file_.get_read_buffer().data);
for (size_t i = 0; i != n; ++i) file_.get();
fill();
}
public:
explicit file_scan_buffer(FILE* f)
: scan_buffer(nullptr, nullptr, false), file_(f) {
flockfile(f);
fill();
}
~file_scan_buffer() { funlockfile(file_); }
};
} // namespace detail
template <typename T, typename Char = char> struct scanner {
// A deleted default constructor indicates a disabled scanner.
scanner() = delete;
};
class scan_parse_context {
private:
string_view format_;
public:
using iterator = string_view::iterator;
explicit FMT_CONSTEXPR scan_parse_context(string_view format)
: format_(format) {}
FMT_CONSTEXPR auto begin() const -> iterator { return format_.begin(); }
FMT_CONSTEXPR auto end() const -> iterator { return format_.end(); }
void advance_to(iterator it) {
format_.remove_prefix(detail::to_unsigned(it - begin()));
}
};
namespace detail {
enum class scan_type {
none_type,
int_type,
uint_type,
long_long_type,
ulong_long_type,
string_type,
string_view_type,
custom_type
};
template <typename Context> struct custom_scan_arg {
void* value;
void (*scan)(void* arg, scan_parse_context& parse_ctx, Context& ctx);
};
} // namespace detail
// A scan argument. Context is a template parameter for the compiled API where
// output can be unbuffered.
template <typename Context> class basic_scan_arg {
private:
using scan_type = detail::scan_type;
scan_type type_;
union {
int* int_value_;
unsigned* uint_value_;
long long* long_long_value_;
unsigned long long* ulong_long_value_;
std::string* string_;
string_view* string_view_;
detail::custom_scan_arg<Context> custom_;
// TODO: more types
};
template <typename T>
static void scan_custom_arg(void* arg, scan_parse_context& parse_ctx,
Context& ctx) {
auto s = scanner<T>();
parse_ctx.advance_to(s.parse(parse_ctx));
ctx.advance_to(s.scan(*static_cast<T*>(arg), ctx));
}
public:
FMT_CONSTEXPR basic_scan_arg()
: type_(scan_type::none_type), int_value_(nullptr) {}
FMT_CONSTEXPR basic_scan_arg(int& value)
: type_(scan_type::int_type), int_value_(&value) {}
FMT_CONSTEXPR basic_scan_arg(unsigned& value)
: type_(scan_type::uint_type), uint_value_(&value) {}
FMT_CONSTEXPR basic_scan_arg(long long& value)
: type_(scan_type::long_long_type), long_long_value_(&value) {}
FMT_CONSTEXPR basic_scan_arg(unsigned long long& value)
: type_(scan_type::ulong_long_type), ulong_long_value_(&value) {}
FMT_CONSTEXPR basic_scan_arg(std::string& value)
: type_(scan_type::string_type), string_(&value) {}
FMT_CONSTEXPR basic_scan_arg(string_view& value)
: type_(scan_type::string_view_type), string_view_(&value) {}
template <typename T>
FMT_CONSTEXPR basic_scan_arg(T& value) : type_(scan_type::custom_type) {
custom_.value = &value;
custom_.scan = scan_custom_arg<T>;
}
constexpr explicit operator bool() const noexcept {
return type_ != scan_type::none_type;
}
auto type() const -> detail::scan_type { return type_; }
template <typename Visitor>
auto visit(Visitor&& vis) -> decltype(vis(monostate())) {
switch (type_) {
case scan_type::none_type:
break;
case scan_type::int_type:
return vis(*int_value_);
case scan_type::uint_type:
return vis(*uint_value_);
case scan_type::long_long_type:
return vis(*long_long_value_);
case scan_type::ulong_long_type:
return vis(*ulong_long_value_);
case scan_type::string_type:
return vis(*string_);
case scan_type::string_view_type:
return vis(*string_view_);
case scan_type::custom_type:
break;
}
return vis(monostate());
}
auto scan_custom(const char* parse_begin, scan_parse_context& parse_ctx,
Context& ctx) const -> bool {
if (type_ != scan_type::custom_type) return false;
parse_ctx.advance_to(parse_begin);
custom_.scan(custom_.value, parse_ctx, ctx);
return true;
}
};
class scan_context;
using scan_arg = basic_scan_arg<scan_context>;
struct scan_args {
int size;
const scan_arg* data;
template <size_t N>
FMT_CONSTEXPR scan_args(const std::array<scan_arg, N>& store)
: size(N), data(store.data()) {
static_assert(N < INT_MAX, "too many arguments");
}
};
class scan_context {
private:
detail::scan_buffer& buf_;
scan_args args_;
public:
using iterator = detail::scan_iterator;
using sentinel = detail::scan_sentinel;
explicit FMT_CONSTEXPR scan_context(detail::scan_buffer& buf, scan_args args)
: buf_(buf), args_(args) {}
FMT_CONSTEXPR auto arg(int id) const -> scan_arg {
return id < args_.size ? args_.data[id] : scan_arg();
}
auto begin() const -> iterator { return buf_.begin(); }
auto end() const -> sentinel { return {}; }
void advance_to(iterator) { buf_.consume(); }
};
namespace detail {
const char* parse_scan_specs(const char* begin, const char* end,
format_specs& specs, scan_type) {
while (begin != end) {
switch (to_ascii(*begin)) {
// TODO: parse more scan format specifiers
case 'x':
specs.type = presentation_type::hex;
++begin;
break;
case '}':
return begin;
}
}
return begin;
}
template <typename T, FMT_ENABLE_IF(std::is_unsigned<T>::value)>
auto read(scan_iterator it, T& value) -> scan_iterator {
if (it == scan_sentinel()) return it;
char c = *it;
if (c < '0' || c > '9') report_error("invalid input");
int num_digits = 0;
T n = 0, prev = 0;
char prev_digit = c;
do {
prev = n;
n = n * 10 + static_cast<unsigned>(c - '0');
prev_digit = c;
c = *++it;
++num_digits;
if (c < '0' || c > '9') break;
} while (it != scan_sentinel());
// Check overflow.
if (num_digits <= std::numeric_limits<int>::digits10) {
value = n;
return it;
}
unsigned max = to_unsigned((std::numeric_limits<int>::max)());
if (num_digits == std::numeric_limits<int>::digits10 + 1 &&
prev * 10ull + unsigned(prev_digit - '0') <= max) {
value = n;
} else {
report_error("number is too big");
}
return it;
}
template <typename T, FMT_ENABLE_IF(std::is_unsigned<T>::value)>
auto read_hex(scan_iterator it, T& value) -> scan_iterator {
if (it == scan_sentinel()) return it;
int digit = to_hex_digit(*it);
if (digit < 0) report_error("invalid input");
int num_digits = 0;
T n = 0;
do {
n = (n << 4) + static_cast<unsigned>(digit);
++num_digits;
digit = to_hex_digit(*++it);
if (digit < 0) break;
} while (it != scan_sentinel());
// Check overflow.
if (num_digits <= (std::numeric_limits<T>::digits >> 2))
value = n;
else
report_error("number is too big");
return it;
}
template <typename T, FMT_ENABLE_IF(std::is_unsigned<T>::value)>
auto read(scan_iterator it, T& value, const format_specs& specs)
-> scan_iterator {
if (specs.type == presentation_type::hex) return read_hex(it, value);
return read(it, value);
}
template <typename T, FMT_ENABLE_IF(std::is_signed<T>::value)>
auto read(scan_iterator it, T& value, const format_specs& specs = {})
-> scan_iterator {
bool negative = it != scan_sentinel() && *it == '-';
if (negative) {
++it;
if (it == scan_sentinel()) report_error("invalid input");
}
using unsigned_type = typename std::make_unsigned<T>::type;
unsigned_type abs_value = 0;
it = read(it, abs_value, specs);
auto n = static_cast<T>(abs_value);
value = negative ? -n : n;
return it;
}
auto read(scan_iterator it, std::string& value, const format_specs& = {})
-> scan_iterator {
while (it != scan_sentinel() && *it != ' ') value.push_back(*it++);
return it;
}
auto read(scan_iterator it, string_view& value, const format_specs& = {})
-> scan_iterator {
auto range = to_contiguous(it);
// This could also be checked at compile time in scan.
if (!range) report_error("string_view requires contiguous input");
auto p = range.begin;
while (p != range.end && *p != ' ') ++p;
size_t size = to_unsigned(p - range.begin);
value = {range.begin, size};
return advance(it, size);
}
auto read(scan_iterator it, monostate, const format_specs& = {})
-> scan_iterator {
return it;
}
// An argument scanner that uses the default format, e.g. decimal for integers.
struct default_arg_scanner {
scan_iterator it;
template <typename T> FMT_INLINE auto operator()(T&& value) -> scan_iterator {
return read(it, value);
}
};
// An argument scanner with format specifiers.
struct arg_scanner {
scan_iterator it;
const format_specs& specs;
template <typename T> auto operator()(T&& value) -> scan_iterator {
return read(it, value, specs);
}
};
struct scan_handler {
private:
scan_parse_context parse_ctx_;
scan_context scan_ctx_;
int next_arg_id_;
using sentinel = scan_buffer::sentinel;
public:
FMT_CONSTEXPR scan_handler(string_view format, scan_buffer& buf,
scan_args args)
: parse_ctx_(format), scan_ctx_(buf, args), next_arg_id_(0) {}
auto pos() const -> scan_buffer::iterator { return scan_ctx_.begin(); }
void on_text(const char* begin, const char* end) {
if (begin == end) return;
auto it = scan_ctx_.begin();
for (; begin != end; ++begin, ++it) {
if (it == sentinel() || *begin != *it) on_error("invalid input");
}
scan_ctx_.advance_to(it);
}
FMT_CONSTEXPR auto on_arg_id() -> int { return on_arg_id(next_arg_id_++); }
FMT_CONSTEXPR auto on_arg_id(int id) -> int {
if (!scan_ctx_.arg(id)) on_error("argument index out of range");
return id;
}
FMT_CONSTEXPR auto on_arg_id(string_view id) -> int {
if (id.data()) on_error("invalid format");
return 0;
}
void on_replacement_field(int arg_id, const char* begin) {
scan_arg arg = scan_ctx_.arg(arg_id);
if (arg.scan_custom(begin, parse_ctx_, scan_ctx_)) return;
auto it = scan_ctx_.begin();
while (it != sentinel() && is_whitespace(*it)) ++it;
scan_ctx_.advance_to(arg.visit(default_arg_scanner{it}));
}
auto on_format_specs(int arg_id, const char* begin, const char* end) -> const
char* {
scan_arg arg = scan_ctx_.arg(arg_id);
if (arg.scan_custom(begin, parse_ctx_, scan_ctx_))
return parse_ctx_.begin();
auto specs = format_specs();
begin = parse_scan_specs(begin, end, specs, arg.type());
if (begin == end || *begin != '}') on_error("missing '}' in format string");
scan_ctx_.advance_to(arg.visit(arg_scanner{scan_ctx_.begin(), specs}));
return begin;
}
void on_error(const char* message) { report_error(message); }
};
void vscan(detail::scan_buffer& buf, string_view fmt, scan_args args) {
auto h = detail::scan_handler(fmt, buf, args);
detail::parse_format_string<false>(fmt, h);
}
template <size_t I, typename... T, FMT_ENABLE_IF(I == sizeof...(T))>
void make_args(std::array<scan_arg, sizeof...(T)>&, std::tuple<T...>&) {}
template <size_t I, typename... T, FMT_ENABLE_IF(I < sizeof...(T))>
void make_args(std::array<scan_arg, sizeof...(T)>& args,
std::tuple<T...>& values) {
using element_type = typename std::tuple_element<I, std::tuple<T...>>::type;
static_assert(std::is_same<remove_cvref_t<element_type>, element_type>::value,
"");
args[I] = std::get<I>(values);
make_args<I + 1>(args, values);
}
} // namespace detail
template <typename... T> class scan_data {
private:
std::tuple<T...> values_;
public:
scan_data() = default;
scan_data(T... values) : values_(std::move(values)...) {}
auto value() const -> decltype(std::get<0>(values_)) {
return std::get<0>(values_);
}
auto values() const -> const std::tuple<T...>& { return values_; }
auto make_args() -> std::array<scan_arg, sizeof...(T)> {
auto args = std::array<scan_arg, sizeof...(T)>();
detail::make_args<0>(args, values_);
return args;
}
};
template <typename... T>
auto make_scan_args(T&... args) -> std::array<scan_arg, sizeof...(T)> {
return {{args...}};
}
class scan_error {};
// A rudimentary version of std::expected for testing the API shape.
template <typename T, typename E> class expected {
private:
T value_;
bool has_value_ = true;
public:
expected(T value) : value_(std::move(value)) {}
explicit operator bool() const { return has_value_; }
auto operator->() const -> const T* { return &value_; }
};
template <typename... T>
using scan_result = expected<scan_data<T...>, scan_error>;
auto vscan(string_view input, string_view fmt, scan_args args)
-> string_view::iterator {
auto&& buf = detail::string_scan_buffer(input);
detail::vscan(buf, fmt, args);
return input.begin() + (buf.begin().base() - input.data());
}
// Scans the input and stores the results (in)to args.
template <typename... T>
auto scan_to(string_view input, string_view fmt, T&... args)
-> string_view::iterator {
return vscan(input, fmt, make_scan_args(args...));
}
template <typename... T>
auto scan(string_view input, string_view fmt) -> scan_result<T...> {
auto data = scan_data<T...>();
vscan(input, fmt, data.make_args());
return data;
}
template <typename Range, typename... T,
FMT_ENABLE_IF(!std::is_convertible<Range, string_view>::value)>
auto scan_to(Range&& input, string_view fmt, T&... args)
-> decltype(std::begin(input)) {
auto it = std::begin(input);
detail::vscan(get_buffer(it), fmt, make_scan_args(args...));
return it;
}
template <typename... T>
auto scan_to(FILE* f, string_view fmt, T&... args) -> bool {
auto&& buf = detail::file_scan_buffer(f);
detail::vscan(buf, fmt, make_scan_args(args...));
return buf.begin() != buf.end();
}
FMT_END_NAMESPACE