Improve exponent handling in Dragon

This commit is contained in:
Victor Zverovich 2022-03-19 07:35:43 -07:00
parent e7f31f5cdb
commit f024565c3f

View File

@ -202,7 +202,7 @@ template <typename T> struct bits {
static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits); static_cast<int>(sizeof(T) * std::numeric_limits<unsigned char>::digits);
}; };
// A floating-point number f * pow(2, e). // A floating-point number f * pow(2, e) where F is an unsigned type.
template <typename F> struct basic_fp { template <typename F> struct basic_fp {
F f; F f;
int e; int e;
@ -214,9 +214,7 @@ template <typename F> struct basic_fp {
// Constructs fp from an IEEE754 floating-point number. It is a template to // Constructs fp from an IEEE754 floating-point number. It is a template to
// prevent compile errors on systems where n is not IEEE754. // prevent compile errors on systems where n is not IEEE754.
template <typename Float> explicit FMT_CONSTEXPR basic_fp(Float n) { template <typename Float> FMT_CONSTEXPR basic_fp(Float n) { assign(n); }
assign(n);
}
template <typename Float> template <typename Float>
using is_supported = bool_constant<std::numeric_limits<Float>::is_iec559 && using is_supported = bool_constant<std::numeric_limits<Float>::is_iec559 &&
@ -2043,10 +2041,17 @@ small_divisor_case_label:
} }
} // namespace dragonbox } // namespace dragonbox
// format_dragon flags.
enum dragon {
predecessor_closer = 1,
fixup = 2, // Run fixup to correct exp10 which can be off by one.
fixed = 4,
};
// Formats a floating-point number using a variation of the Fixed-Precision // Formats a floating-point number using a variation of the Fixed-Precision
// Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White: // Positive Floating-Point Printout ((FPP)^2) algorithm by Steele & White:
// https://fmt.dev/papers/p372-steele.pdf. // https://fmt.dev/papers/p372-steele.pdf.
FMT_CONSTEXPR20 inline void format_dragon(fp value, bool is_predecessor_closer, FMT_CONSTEXPR20 inline void format_dragon(fp value, unsigned flags,
int num_digits, buffer<char>& buf, int num_digits, buffer<char>& buf,
int& exp10) { int& exp10) {
bigint numerator; // 2 * R in (FPP)^2. bigint numerator; // 2 * R in (FPP)^2.
@ -2058,6 +2063,7 @@ FMT_CONSTEXPR20 inline void format_dragon(fp value, bool is_predecessor_closer,
// Shift numerator and denominator by an extra bit or two (if lower boundary // Shift numerator and denominator by an extra bit or two (if lower boundary
// is closer) to make lower and upper integers. This eliminates multiplication // is closer) to make lower and upper integers. This eliminates multiplication
// by 2 during later computations. // by 2 during later computations.
bool is_predecessor_closer = (flags & dragon::predecessor_closer) != 0;
int shift = is_predecessor_closer ? 2 : 1; int shift = is_predecessor_closer ? 2 : 1;
if (value.e >= 0) { if (value.e >= 0) {
numerator.assign(value.f); numerator.assign(value.f);
@ -2094,11 +2100,22 @@ FMT_CONSTEXPR20 inline void format_dragon(fp value, bool is_predecessor_closer,
upper = &upper_store; upper = &upper_store;
} }
} }
bool even = (value.f & 1) == 0;
if (!upper) upper = &lower;
if ((flags & dragon::fixup) != 0) {
if (add_compare(numerator, *upper, denominator) + even <= 0) {
--exp10;
numerator *= 10;
if (num_digits < 0) {
lower *= 10;
if (upper != &lower) *upper *= 10;
}
}
if ((flags & dragon::fixed) != 0) adjust_precision(num_digits, exp10 + 1);
}
// Invariant: value == (numerator / denominator) * pow(10, exp10). // Invariant: value == (numerator / denominator) * pow(10, exp10).
if (num_digits < 0) { if (num_digits < 0) {
// Generate the shortest representation. // Generate the shortest representation.
if (!upper) upper = &lower;
bool even = (value.f & 1) == 0;
num_digits = 0; num_digits = 0;
char* data = buf.data(); char* data = buf.data();
for (;;) { for (;;) {
@ -2179,6 +2196,7 @@ FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision,
// float is passed as double to reduce the number of instantiations. // float is passed as double to reduce the number of instantiations.
static_assert(!std::is_same<Float, float>::value, ""); static_assert(!std::is_same<Float, float>::value, "");
FMT_ASSERT(value >= 0, "value is negative"); FMT_ASSERT(value >= 0, "value is negative");
auto converted_value = convert_float(value);
const bool fixed = specs.format == float_format::fixed; const bool fixed = specs.format == float_format::fixed;
if (value <= 0) { // <= instead of == to silence a warning. if (value <= 0) { // <= instead of == to silence a warning.
@ -2193,10 +2211,21 @@ FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision,
int exp = 0; int exp = 0;
bool use_dragon = true; bool use_dragon = true;
unsigned dragon_flags = 0;
if (!is_fast_float<Float>()) { if (!is_fast_float<Float>()) {
// Use floor because 0.9 = 9e-1. const auto inv_log2_10 = 0.3010299956639812; // 1 / log2(10)
exp = static_cast<int>(std::floor(std::log10(value))); const auto e = basic_fp<typename dragonbox::float_info<
if (fixed) adjust_precision(precision, exp + 1); decltype(converted_value)>::carrier_uint>(converted_value)
.e;
// Compute exp, an approximate power of 10, such that
// 10^(exp - 1) <= value < 10^exp or 10^exp <= value < 10^(exp + 1).
// This is based on log10(value) == log2(value) / log2(10) and approximation
// of log2(value) by e + num_fraction_bits idea from double-conversion.
auto num_fraction_bits =
num_significand_bits<Float>() - (has_implicit_bit<Float>() ? 0 : 1);
exp = static_cast<int>(
std::ceil((e + num_fraction_bits) * inv_log2_10 - 1e-10));
dragon_flags = dragon::fixup;
} else if (!is_constant_evaluated() && precision < 0) { } else if (!is_constant_evaluated() && precision < 0) {
// Use Dragonbox for the shortest format. // Use Dragonbox for the shortest format.
if (specs.binary32) { if (specs.binary32) {
@ -2212,7 +2241,7 @@ FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision,
// https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf. // https://www.cs.tufts.edu/~nr/cs257/archive/florian-loitsch/printf.pdf.
const int min_exp = -60; // alpha in Grisu. const int min_exp = -60; // alpha in Grisu.
int cached_exp10 = 0; // K in Grisu. int cached_exp10 = 0; // K in Grisu.
fp normalized = normalize(fp(convert_float(value))); fp normalized = normalize(fp(converted_value));
const auto cached_pow = get_cached_power( const auto cached_pow = get_cached_power(
min_exp - (normalized.e + fp::num_significand_bits), cached_exp10); min_exp - (normalized.e + fp::num_significand_bits), cached_exp10);
normalized = normalized * cached_pow; normalized = normalized * cached_pow;
@ -2231,12 +2260,14 @@ FMT_HEADER_ONLY_CONSTEXPR20 int format_float(Float value, int precision,
auto f = fp(); auto f = fp();
bool is_predecessor_closer = specs.binary32 bool is_predecessor_closer = specs.binary32
? f.assign(static_cast<float>(value)) ? f.assign(static_cast<float>(value))
: f.assign(convert_float(value)); : f.assign(converted_value);
if (is_predecessor_closer) dragon_flags |= dragon::predecessor_closer;
if (fixed) dragon_flags |= dragon::fixed;
// Limit precision to the maximum possible number of significant digits in // Limit precision to the maximum possible number of significant digits in
// an IEEE754 double because we don't need to generate zeros. // an IEEE754 double because we don't need to generate zeros.
const int max_double_digits = 767; const int max_double_digits = 767;
if (precision > max_double_digits) precision = max_double_digits; if (precision > max_double_digits) precision = max_double_digits;
format_dragon(f, is_predecessor_closer, precision, buf, exp); format_dragon(f, dragon_flags, precision, buf, exp);
} }
if (!fixed && !specs.showpoint) { if (!fixed && !specs.showpoint) {
// Remove trailing zeros. // Remove trailing zeros.