84 lines
3.9 KiB
Python
84 lines
3.9 KiB
Python
import pandas as pd
|
|
|
|
from utils.base.base import BasePointPassportFormer, BaseIdealDataBuilder
|
|
|
|
|
|
class idealDataBuilder(BaseIdealDataBuilder):
|
|
def get_closingDF(self) -> pd.DataFrame:
|
|
return self._get_data(self.Ts['tclose'], self.calcPhaseClose)
|
|
|
|
def get_compressionDF(self) -> pd.DataFrame:
|
|
return self._get_data(self.Ts['tgrow'], self.calcPhaseGrow)
|
|
|
|
def get_openingDF(self) -> pd.DataFrame:
|
|
return self._get_data(self.getMarkOpen(), self.calcPhaseOpen)
|
|
|
|
def get_oncomingDF(self) -> pd.DataFrame:
|
|
return self._get_data(self.Ts['tmovement'], self.calcPhaseMovement)
|
|
|
|
def get_weldingDF(self) -> pd.DataFrame:
|
|
data = []
|
|
X1, X2, V1, V2, F = self.calcPhaseGrow(self.Ts['tgrow'])
|
|
data.append({"time":0, "Position FE":X1,"Position ME":X2, "Rotor Speed FE":V1, "Rotor Speed ME":V2, "Force":F})
|
|
data.append({"time":self.welding_time, "Position FE":X1,"Position ME":X2, "Rotor Speed FE":V1, "Rotor Speed ME":V2, "Force":F})
|
|
return pd.DataFrame(data)
|
|
|
|
def get_ideal_timings(self) -> list[float]:
|
|
data = self.Ts
|
|
ideal_timings = [data['tclose'], data['tgrow'], self.welding_time, self.getMarkOpen(), data['tmovement']] # TODO: add data['tmovement'], Oncoming не учитывается в производительности
|
|
return ideal_timings
|
|
|
|
class PassportFormer(BasePointPassportFormer):
|
|
|
|
def form_passports(self, data: list[pd.DataFrame]) -> list[list[pd.DataFrame, dict, int]]:
|
|
return_data = [self._build_passports_pocket(dataframe) for dataframe in data]
|
|
self._mediator.notify(self, return_data)
|
|
|
|
|
|
def _build_passports_pocket(self, dataframe: pd.DataFrame) -> list[pd.DataFrame, dict, int]:
|
|
events, point_quantity = self._filter_events(dataframe["time"], dataframe)
|
|
if point_quantity == 0:
|
|
return []
|
|
|
|
system_settings = {key: value[0] for key, value in self._params[1].items()}
|
|
|
|
tesla_time = sum(self._params[0].get("Tesla summary time", []))
|
|
useful_data = {"tesla_time": tesla_time,
|
|
"range_ME": system_settings["Range ME, mm"],
|
|
"k_hardness": system_settings["k_hardness_1"]
|
|
}
|
|
|
|
points_pocket = []
|
|
|
|
time_is_valid = not dataframe["time"].isna().all()
|
|
|
|
if time_is_valid:
|
|
|
|
idx_shift = True if events[self._stages[-1]][0][0] == 0 else False
|
|
|
|
for i in range(point_quantity):
|
|
operator_settings = {
|
|
key: (value[i] if i < len(value) else value[0])
|
|
for key, value in self._params[0].items()
|
|
}
|
|
params_list = [operator_settings, system_settings]
|
|
cache_key = self._generate_cache_key(params_list)
|
|
if cache_key in self._ideal_data_cashe :
|
|
ideal_data = self._ideal_data_cashe[cache_key]
|
|
print(f"Cache hit")
|
|
else:
|
|
ideal_data = self._build_ideal_data(idealDataBuilder=idealDataBuilder, params=params_list)
|
|
self._ideal_data_cashe[cache_key] = ideal_data
|
|
print(f"Cache miss. Computed and cached.")
|
|
idx = i+1 if idx_shift else i
|
|
point_timeframe = [events[self._stages[0]][0][i], events[self._stages[-1]][1][idx]]
|
|
point_events = {key: [value[0][i], value[1][i]] for key, value in events.items()}
|
|
useful_p_data = {"thickness": operator_settings["object_thickness"],
|
|
"L2": operator_settings["distance_l_2"],
|
|
"force": operator_settings["force_target"]}
|
|
|
|
points_pocket.append([point_timeframe, ideal_data, point_events, useful_p_data])
|
|
return dataframe, points_pocket, useful_data
|
|
|
|
def update_settings(self, params: list[dict, dict]):
|
|
self._params = params |