import pyqtgraph as pg from pyqtgraph.Qt import QtWidgets import numpy as np from src.gui import qt_settings as qts from src.OptAlgorithm import OptAlgorithm class PlotWindow: def __init__(self, opt: OptAlgorithm, show_settings_func): pg.setConfigOptions(antialias=True) self.alpha = 100 #[0-255 прозрачность фона] self.opt = opt self._init_ui() self.settings_button.clicked.connect(show_settings_func) def update_data(self, system_config : dict, operator_config: dict, opt: OptAlgorithm, ideal_time: list[float], bool_dict: dict, float_dict: dict, timings_dict: dict, mode: bool): self.opt = opt self.bool_dict = bool_dict self.float_dict = float_dict self.timings_dict = timings_dict self.idealTime = ideal_time self.theor_mode = mode self.scaler = int(system_config['UML_time_scaler']) self.WeldTime = operator_config['time_wielding'] #[sec] self.WeldData = self.opt.calcPhaseGrow(self.idealTime[1]) self._updatePlots() def _init_ui(self): self.widget = QtWidgets.QWidget() layout = QtWidgets.QVBoxLayout() self.widget.setLayout(layout) self.win = pg.GraphicsLayoutWidget(show=True, title="") self.win.resize(1000,600) self.win.setWindowTitle('') layout.addWidget(self.win) self.settings_button = QtWidgets.QPushButton("Show settings") self.settings_button.setFixedWidth(160) layout.addWidget(self.settings_button) self.p11, self.l11 = self._init_graph('Electrode force, closure', 'Force', 'N', 'Time', 'ms') #self.p21, _ = self._init_graph('Electrode force, compression', 'Force', 'N', 'Time', 'ms') #self.p31, _ = self._init_graph('Electrode force, compression', 'Force', 'N', 'Time', 'ms') self.win.nextRow() self.p12, self.l12 = self._init_graph('Rotor Position, closure', 'Posicion', 'mm', 'Time', 'ms') #self.p22, _ = self._init_graph('Rotor Position, compression', 'Posicion', 'mm', 'Time', 'ms') #self.p32, _ = self._init_graph('Rotor Position, compression', 'Posicion', 'mm', 'Time', 'ms') self.win.nextRow() self.p13, self.l13 = self._init_graph('Rotor Speed, closure', 'Speed', 'mm/s', 'Time', 'ms') #self.p23, _ = self._init_graph('Rotor Speed, compression', 'Speed', 'mm/s', 'Time', 'ms') #self.p33, _ = self._init_graph('Rotor Speed, compression', 'Speed', 'mm/s', 'Time', 'ms') self.win.nextRow() self.p12.setXLink(self.p11) self.p13.setXLink(self.p11) self.p11.setAutoVisible(x=False, y=True) self.p12.setAutoVisible(x=False, y=True) self.p13.setAutoVisible(x=False, y=True) self.widget.setStyleSheet(qts.dark_style) self.widget.show() def _init_graph(self, title, Yname, Yunits, Xname, Xunits): plot = self.win.addPlot(title = title) plot.showGrid(x=True, y=True) plot.setLabel('left', Yname, units=Yunits) plot.setLabel('bottom', Xname, units=Xunits) legend1 = pg.LegendItem((80,60), offset=(70,20)) legend1.setParentItem(plot) return plot, legend1 def _updatePlots(self): self.p11.clear() self.l11.clear() self.p12.clear() self.l12.clear() self.p13.clear() self.l13.clear() if not self.theor_mode: self._plotRealData() self._form_idealdatGraph() def _form_idealdatGraph(self): if self.theor_mode: self.timings_dict["closure"] = [[0, self.idealTime[0]]] self.timings_dict["compression"] = [[self.idealTime[0], sum(self.idealTime[:2])]] self.timings_dict["welding"] = [[sum(self.idealTime[:2]), sum(self.idealTime[:2])+self.WeldTime]] self.timings_dict["opening"] = [[sum(self.idealTime[:2])+self.WeldTime, sum(self.idealTime[:3])+self.WeldTime]] delta = 10 #points_per_ms for key, items in self.timings_dict.items(): if key == 'closure': ideal_time = self.idealTime[0] calc = self.opt.calcPhaseClose color = qts.RGBA[0] elif key == 'compression': ideal_time = self.idealTime[1] calc = self.opt.calcPhaseGrow color = qts.RGBA[1] elif key == 'welding': ideal_time = self.WeldTime calc = self._returnWeldData color = qts.RGBA[2] elif key == 'opening': calc = self.opt.calcPhaseOpen ideal_time = self.idealTime[2] ideal_closure = self.idealTime[3] color = qts.RGBA[3] color_closure = qts.RGBA[4] for item in items: item_data = [] time_data = [] for i in range(0, int(ideal_time*self.scaler)*delta): time = i/delta item_data.append(calc(time/self.scaler)) time_data.append(time+item[0]*self.scaler) #print (item_data[-1], time_data[-1]) self._plotIdealData(np.array(time_data), np.array(item_data).T) self._addBackgroundSplitter([item[0]*self.scaler,item[0]*self.scaler + time], color) if key == 'opening': item_data = [] time_data = [] for i in range(0, int(ideal_closure*self.scaler)*delta): time = i/delta item_data.append(self.opt.calcPhaseMovement(time/self.scaler)) time_data.append(time+item[1]*self.scaler) self._plotIdealData(np.array(time_data), np.array(item_data).T) self._addBackgroundSplitter([item[1]*self.scaler,item[1]*self.scaler + time], color_closure) elif key == 'welding': x = [time_data[0], time_data[-1], time_data[-1]+0.0001] y = [item_data[0][4], item_data[0][4], item_data[0][4]] a1, b1, c1 = self._calculate_equidistant(x, y, 0.75, 3) self.p11.addItem(a1) self.p11.addItem(b1) self.p11.addItem(c1) elif key == 'compression': temp = item_data[-1][4] x = [time_data[0], time_data[-1], time_data[-1]+0.0001] y = [temp, temp, temp] a1, b1, c1 = self._calculate_equidistant(x, y, 2.5, 3) self.p11.addItem(a1) self.p11.addItem(b1) self.p11.addItem(c1) def _returnWeldData(self, _): return self.WeldData def _plotRealData(self): for i, (key, dat) in enumerate(self.float_dict.items()): dat = np.array(dat).T dat[0] = dat[0]*self.scaler curve = pg.PlotDataItem(dat[0], dat[1], pen=pg.mkPen(color=qts.colors[i], width=2), name=key, autoDownsample=True, downsample=True) if 'Electrode Force' in key: self.p11.addItem(curve) self.l11.addItem(curve, key) elif 'Rotor Position' in key: self.p12.addItem(curve) self.l12.addItem(curve, key) elif 'Rotor Speed' in key: self.p13.addItem(curve) self.l13.addItem(curve, key) return dat[0] def _plotIdealData(self, time, data): x_fe = pg.PlotDataItem(time, data[0]*1000, pen=pg.mkPen(color=qts.colors[8], width=2), name='x_fe', autoDownsample=True, downsample=True) x_me = pg.PlotDataItem(time, data[1]*1000, pen=pg.mkPen(color=qts.colors[9], width=2), name='x_me', autoDownsample=True, downsample=True) v_fe = pg.PlotDataItem(time, data[2]*1000, pen=pg.mkPen(color=qts.colors[8], width=2), name='v_fe', autoDownsample=True, downsample=True) v_me = pg.PlotDataItem(time, data[3]*1000, pen=pg.mkPen(color=qts.colors[9], width=2), name='v_me', autoDownsample=True, downsample=True) f = pg.PlotDataItem(time, data[4], pen=pg.mkPen(color=qts.colors[8], width=2), name='f', autoDownsample=True, downsample=True) self.p11.addItem(f) #self.l11.addItem(f, 'Ideal force') self.p12.addItem(x_fe) #self.l12.addItem(x_fe, 'FE POS') self.p12.addItem(x_me) #self.l12.addItem(x_me, 'ME POS') self.p13.addItem(v_fe) #self.l13.addItem(v_fe, 'FE VEL') self.p13.addItem(v_me) #self.l13.addItem(v_me, 'ME VEL') #self._addBackgroundSplitter() #self._addEquidistances(time, data) def _addBackgroundSplitter(self, x, color): alpha = self.alpha y01 = np.array([10000, 10000]) y0_1 = np.array([-10000, -10000]) a01 = pg.PlotDataItem(x, y01, pen=pg.mkPen(color=qts.colors[8], width=2), name=' ') a0_1 = pg.PlotDataItem(x, y0_1, pen=pg.mkPen(color=qts.colors[8], width=2), name=' ') bg1 = pg.FillBetweenItem(a01, a0_1, color+(alpha,)) bg2 = pg.FillBetweenItem(a01, a0_1, color+(alpha,)) bg3 = pg.FillBetweenItem(a01, a0_1, color+(alpha,)) self.p11.addItem(bg1) self.p12.addItem(bg2) self.p13.addItem(bg3) self.p11.setYRange(-1000, 5000) self.p12.setYRange(-50, 250) self.p13.setYRange(-400, 400) def _makeFiller(self, x1, y1, x2, y2, color): alpha = self.alpha eq1 = pg.PlotDataItem(x1, y1, pen=pg.mkPen(color='#000000', width=1)) eq2 = pg.PlotDataItem(x2, y2, pen=pg.mkPen(color='#000000', width=1)) bg = pg.FillBetweenItem(eq1, eq2, qts.RGBA[color]+(alpha,)) return eq1, eq2, bg def _calculate_equidistant(self, x, y, percent, color): if len(x) != len(y): raise ValueError("x и y должны быть одного размера") distance = max(y)/100*percent x_eq1 = [] y_eq1 = [] x_eq2 = [] y_eq2 = [] for i in range(0, len(x) - 1): dx = x[i + 1] - x[i] dy = y[i + 1] - y[i] length = np.sqrt(dx ** 2 + dy ** 2) sinA = dy/length sinB = dx/length nx = -sinA*distance ny = sinB*distance x_eq1.append(x[i] + nx) y_eq1.append(y[i] + ny) x_eq2.append(x[i] - nx) y_eq2.append(y[i] - ny) return self._makeFiller(np.array(x_eq1), np.array(y_eq1), np.array(x_eq2), np.array(y_eq2), color)