fix: Исправлено смыкание на идеальной траектории

This commit is contained in:
ermolaev_p 2024-12-23 16:35:39 +03:00
parent 625f3d7e01
commit ccfb6b9fcb
2 changed files with 177 additions and 127 deletions

View File

@ -3,27 +3,29 @@ from numpy import sqrt, arcsin, arccos, cos, sin
from OptAlgorithm.AutoConfigClass import AutoConfigClass
from OptAlgorithm.ConstantCalculator import ConstantCalculator
class OptTimeCalculator(AutoConfigClass):
class OptTimeCalculator(AutoConfigClass):
params_list = []
def __init__(self, operator_config : dict, system_config : dict):
def __init__(self, operator_config: dict, system_config: dict):
cCalculator = ConstantCalculator(operator_config, system_config)
super().__init__(OptTimeCalculator.params_list, operator_config, system_config, cCalculator.calc())
self.allTimes = {}
self.check_eps = 1e-7
def tGrowNominal(self, F : float) -> float:
return arcsin(F/(self.Ftogrow)) * sqrt(self.mass_1/self.k_hardness_1)
def tGrowNominal(self, F: float) -> float:
return arcsin(F / (self.Ftogrow)) * sqrt(self.mass_1 / self.k_hardness_1)
def Tclose(self, h1: float, h2: float) -> None:
v0q = min(sqrt(2 * self.a_max_1 * h1), self.v_max_1)
v0 = min(v0q, sqrt(1/(self.k_hardness_1*self.mass_1))* self.Ftogrow)
v0 = min(v0q, sqrt(1 / (self.k_hardness_1 * self.mass_1)) * self.Ftogrow)
t1 = v0 / self.a_max_1
t2t = max(0, (h1 - (self.a_max_1 * t1 * t1 /2)) / v0)
t2t = max(0, (h1 - (self.a_max_1 * t1 * t1 / 2)) / v0)
T1 = t1 + t2t
t21 = sqrt(h2/self.a_max_2)
t21 = min(self.v_max_2/self.a_max_2, t21)
t21 = sqrt(h2 / (self.a_max_2))
t21 = min(self.v_max_2 / self.a_max_2, t21)
t22 = max(0, (h2 - (self.a_max_2 * t21 * t21)) / self.v_max_2)
T2 = t22 + 2 * t21
@ -39,21 +41,20 @@ class OptTimeCalculator(AutoConfigClass):
self.allTimes["tclose_2_speed"] = tclose_2_speed
self.allTimes["tclose"] = Tclose
def Topen(self, s1 : float, s2 : float, l1 : float, l2 : float, Fs1 : float, Fs2 : float = 0) -> None:
t11 = sqrt((l1 + Fs1)/self.a_max_1)
t11 = min(self.v_max_1/self.a_max_1, t11)
t12 = max(0, ((l1+Fs1) - (self.a_max_1 * t11 * t11)) / self.v_max_1)
def Topen(self, s1: float, s2: float, l1: float, l2: float, Fs1: float, Fs2: float = 0) -> None:
t11 = sqrt((l1 + Fs1) / self.a_max_1)
t11 = min(self.v_max_1 / self.a_max_1, t11)
t12 = max(0, ((l1 + Fs1) - (self.a_max_1 * t11 * t11)) / self.v_max_1)
T1 = t12 + 2 * t11
offset = self.calcSecondOpenOffset(t11, t12, Fs1)
t21 = sqrt(l2/self.a_max_2)
t21 = min(self.v_max_2/self.a_max_2, t21)
t21 = sqrt(l2 / self.a_max_2)
t21 = min(self.v_max_2 / self.a_max_2, t21)
t22 = max(0, (l2 - (self.a_max_2 * t21 * t21)) / self.v_max_2)
T2 = t22 + 2 * t21 + offset
topen_1_acc, topen_1_speed = self.calcFirstOpen(T1, l1+Fs1)
topen_1_acc, topen_1_speed = self.calcFirstOpen(T1, l1 + Fs1)
offset = self.calcSecondOpenOffset(topen_1_acc, topen_1_speed, Fs1)
topen_2_acc, topen_2_speed = self.calcSecondOpen(T2 - offset, l2)
self.allTimes["topen_1_acc"] = topen_1_acc
@ -79,7 +80,7 @@ class OptTimeCalculator(AutoConfigClass):
v1 = topen_1_acc * self.a_max_1
if s1 > topen_1_speed * v1:
s1 -= topen_1_speed * v1
topen_1_mark = 2*topen_1_acc + topen_1_speed - sqrt(topen_1_acc**2 - 2*s1 / self.a_max_1)
topen_1_mark = 2 * topen_1_acc + topen_1_speed - sqrt(topen_1_acc ** 2 - 2 * s1 / self.a_max_1)
else:
topen_1_mark = topen_1_acc + s1 / v1
@ -89,7 +90,7 @@ class OptTimeCalculator(AutoConfigClass):
v2 = topen_2_acc * self.a_max_2
if s2 > topen_2_speed * v2:
s2 -= topen_2_speed * v2
topen_2_mark = 2*topen_2_acc + topen_2_speed - sqrt(topen_2_acc**2 - 2*s2 / self.a_max_2)
topen_2_mark = 2 * topen_2_acc + topen_2_speed - sqrt(topen_2_acc ** 2 - 2 * s2 / self.a_max_2)
else:
topen_2_mark = topen_2_acc + s2 / v2
@ -101,25 +102,27 @@ class OptTimeCalculator(AutoConfigClass):
v0 = self.allTimes["tclose_1_acc"] * self.a_max_1
vF0 = v0 * self.k_hardness_1
vFmax = min(self.v_max_1 * self.k_hardness_1, sqrt(self.k_hardness_1/(self.mass_1))* self.Ftogrow)
vFmax = min(self.v_max_1 * self.k_hardness_1, sqrt(self.k_hardness_1 / (self.mass_1)) * self.Ftogrow)
L = sqrt(self.k_hardness_1 / self.mass_1 * self.eff_control ** 2 + vF0*vF0)
tspeed = sqrt(self.mass_1/self.k_hardness_1) * (arcsin(vFmax / L) - arccos(sqrt(self.k_hardness_1 / self.mass_1) * self.eff_control / L))
Fspeed = - self.eff_control * cos(self.freq * tspeed) + self.eff_control + 1/self.freq * vF0 * sin(self.freq * tspeed)
L = sqrt(self.k_hardness_1 / self.mass_1 * self.eff_control ** 2 + vF0 * vF0)
tspeed = sqrt(self.mass_1 / self.k_hardness_1) * (
arcsin(vFmax / L) - arccos(sqrt(self.k_hardness_1 / self.mass_1) * self.eff_control / L))
Fspeed = - self.eff_control * cos(self.freq * tspeed) + self.eff_control + 1 / self.freq * vF0 * sin(
self.freq * tspeed)
eps = 1e1
if self.freq**2 * self.Ftogrow**2 - vFmax**2 < -eps:
if self.freq ** 2 * self.Ftogrow ** 2 - vFmax ** 2 < -eps:
raise Exception("""Номинальная траектория набора усилия не может быть достигнута, максимальная скорость превысила скорость траектории
, проверьте параметры k_hardness_1, mass_1, k_prop""")
Fmeet = 1/self.freq * sqrt(self.freq**2 * self.Ftogrow**2 - vFmax**2 + eps)
Fmeet = 1 / self.freq * sqrt(self.freq ** 2 * self.Ftogrow ** 2 - vFmax ** 2 + eps)
Fstart_prop = self.Fstart_prop
if Fmeet > Fstart_prop:
raise Exception("""Номинальная траектория набора усилия была достигнута на фазе подпора
, проверьте параметры v_max_1, k_prop""")
tmeet = (Fmeet - Fspeed)/vFmax
tmeet = (Fmeet - Fspeed) / vFmax
tend = self.tGrowNominal(Fstart_prop) - self.tGrowNominal(Fmeet)
vp = 1/sqrt(self.k_hardness_1 * self.mass_1) * sqrt(self.Ftogrow**2 - self.Fstart_prop**2)
vp = 1 / sqrt(self.k_hardness_1 * self.mass_1) * sqrt(self.Ftogrow ** 2 - self.Fstart_prop ** 2)
ap = Fstart_prop / self.mass_1
tprop = 2*vp / ap
tprop = 2 * vp / ap
self.allTimes["tspeed"] = tspeed
self.allTimes["tmeet"] = tmeet
@ -127,109 +130,113 @@ class OptTimeCalculator(AutoConfigClass):
self.allTimes["tprop"] = tprop
self.allTimes["tgrow"] = tspeed + tmeet + tend + tprop
def T(self, h1 : float, h2 : float, s1 : float, s2 : float, l1 : float, l2 : float) -> dict:
def T(self, h1: float, h2: float, s1: float, s2: float, l1: float, l2: float) -> dict:
self.Tclose(h1, h2)
self.Tgrow()
self.Topen(s1, s2, l1, l2, self.force_target / self.k_hardness_1, 0)
return self.allTimes
def Tmovement(self, closeAlgo, tmark) -> None:
def Tmovement(self, closeAlgo, tmark) -> tuple[list, list]:
contact = [self.contact_distance_1, self.contact_distance_2]
v0s = []
pos0s = []
for i in range(1,3):
for i in range(1, 3):
if tmark < 0:
raise Exception("""Отрицательное время этапа раскрытия,
проверьте distance_s_{1,2}, time_command""")
v0 = closeAlgo("V"+str(i), "Open", tmark)
v0 = closeAlgo("V" + str(i), "Open", tmark)
v0s.append(v0)
x0 = closeAlgo("X"+str(i), "Open", tmark)
x1 = contact[i-1] - self.__dict__["distance_h_end"+str(i)]
x0 = closeAlgo("X" + str(i), "Open", tmark)
x1 = contact[i - 1] - self.__dict__["distance_h_end" + str(i)]
x = x1 - x0
pos0s.append(closeAlgo("X"+str(i), "Open", tmark))
pos0s.append(closeAlgo("X" + str(i), "Open", tmark))
Tfull = self.time_robot_movement
L = self.__dict__["distance_l_"+str(i)]
maxL = contact[i-1] - L - x0
L = self.__dict__["distance_l_" + str(i)]
maxL = contact[i - 1] - L - x0
self.Tmovementi(i, x, Tfull, v0, maxL)
return pos0s, v0s
def Tmovementi(self, i, Sfull, Tfull, v0, maxL) -> None:
v0 = abs(v0)
vmax = self.__dict__["v_max_"+str(i)]
a = self.__dict__["a_max_"+str(i)]
vmax = self.__dict__["v_max_" + str(i)]
a = self.__dict__["a_max_" + str(i)]
t3 = (Tfull + v0 / a) / 2
sqrtval = a**2 * (a**2 * (Tfull+2*t3)**2 - 8 * a * Sfull + 2 * a* v0 * (Tfull+2*t3) - 3 *v0**2)
sqrtval = a ** 2 * (
a ** 2 * (Tfull + 2 * t3) ** 2 - 8 * a * Sfull + 2 * a * v0 * (Tfull + 2 * t3) - 3 * v0 ** 2)
if sqrtval < 0:
raise Exception("""Невозможно с S_{i} добраться но H*_{i} за указанное время,
проверьте distance_s_{i}, distance_h_end{i}, time_command, time_robot_movement""")
t1max = ((Tfull+2*t3) + v0/a)/(2) - sqrt(sqrtval) * sqrt(2)/(4*a**2)
t1 = min(t1max, (vmax- abs(v0))/a)
t1 = max(0, min(t1, -v0/a + sqrt(v0**2 / (a**2) + (abs(maxL)-v0*v0/a)/a)))
t1max = ((Tfull + 2 * t3) + v0 / a) / (2) - sqrt(sqrtval) * sqrt(2) / (4 * a ** 2)
t1 = min(t1max, (vmax - abs(v0)) / a)
t1 = max(0, min(t1, -v0 / a + sqrt(v0 ** 2 / (a ** 2) + (abs(maxL) - v0 * v0 / a) / a)))
t31 = v0/a + t1
t5max = (Tfull - v0/a)/2 - t1
t31 = v0 / a + t1
t5max = (Tfull - v0 / a) / 2 - t1
v1 = v0 + a * t1
S1 = v0*t1 + a*t1*t1/2 + v1*t31 - a*t31*t31/2
S1 = v0 * t1 + a * t1 * t1 / 2 + v1 * t31 - a * t31 * t31 / 2
S2max = Sfull + S1
t5 = min(t5max, (vmax)/a, sqrt(S2max / a))
t3 = abs(v0)/a + t1 + t5
t5 = min(t5max, (vmax) / a, sqrt(S2max / a))
t3 = abs(v0) / a + t1 + t5
t32 = t5
v1 = abs(v0+t1*a)
v3 = abs(v0 + t1*a - t3*a)
v1 = abs(v0 + t1 * a)
v3 = abs(v0 + t1 * a - t3 * a)
timeleft = Tfull - t1 - t5 - t3
sq = -v0*t1 - a*t1**2/2 - v1 * t3 + a*t3**2/2 + v3*t5 - a*t5**2/2
sq = -v0 * t1 - a * t1 ** 2 / 2 - v1 * t3 + a * t3 ** 2 / 2 + v3 * t5 - a * t5 ** 2 / 2
Sleft = Sfull - sq
t2max = (timeleft - Sleft/v3) / (1 + v1/v3)
Smovement = -v0 * t1 - a/2 * t1**2 - v1 * t31 + a/2*t31**2
t2 = max(0, min(t2max, (abs(maxL) - abs(Smovement))/v1))
t4 = max(0, Sleft/v3 + v1/v3 * t2)
t2max = (timeleft - Sleft / v3) / (1 + v1 / v3)
Smovement = -v0 * t1 - a / 2 * t1 ** 2 - v1 * t31 + a / 2 * t31 ** 2
t2 = max(0, min(t2max, (abs(maxL) - abs(Smovement)) / v1))
t4 = max(0, Sleft / v3 + v1 / v3 * t2)
tstay = max(0, Tfull - t1 - t2 - t3 - t4 - t5)
self.allTimes["tmovement_"+str(i)+"_acc"] = t1
self.allTimes["tmovement_"+str(i)+"_speed"] = t2
self.allTimes["tmovement_"+str(i)+"_slow"] = t31
self.allTimes["tmovement_"+str(i)+"_stay"] = tstay
self.allTimes["tmovement_"+str(i)] = t1 + t2 + t31 + tstay
self.allTimes["tpreclose_"+str(i)+"_slow"] = t32
self.allTimes["tpreclose_"+str(i)+"_speed"] = t4
self.allTimes["tpreclose_"+str(i)+"_acc"] = t5
self.allTimes["tpreclose_"+str(i)] = t32 + t4 + t5
self.allTimes["tmovement_" + str(i) + "_acc"] = t1
self.allTimes["tmovement_" + str(i) + "_speed"] = t2
self.allTimes["tmovement_" + str(i) + "_slow"] = t31
self.allTimes["tmovement_" + str(i) + "_stay"] = tstay
self.allTimes["tmovement_" + str(i)] = t1 + t2 + t31 + tstay
self.allTimes["tpreclose_" + str(i) + "_slow"] = t32
self.allTimes["tpreclose_" + str(i) + "_speed"] = t4
self.allTimes["tpreclose_" + str(i) + "_acc"] = t5
self.allTimes["tpreclose_" + str(i)] = t32 + t4 + t5
T = Tfull
self.allTimes["tmovement"] = T
def calcFirstClose(self, T : float, s : float) -> tuple[float, float]:
def calcFirstClose(self, T: float, s: float) -> tuple[float, float]:
v0q = min(sqrt(2 * self.a_max_1 * s), self.v_max_1)
v0 = min(v0q, sqrt(1/(self.k_hardness_1*self.mass_1))* self.Ftogrow)
t1 = T - sqrt(max(0, T**2 - 2 * s / self.a_max_1))
t1 = min(t1, v0 / self.a_max_1)
t2 = max(0, (s - self.a_max_1*t1**2/2) / (self.a_max_1*t1))
v0 = min(v0q, sqrt(1 / (self.k_hardness_1 * self.mass_1)) * self.Ftogrow)
t1 = T - sqrt(max(0, T ** 2 - 2 * s / self.a_max_1))
if t1 > v0/ self.a_max_1 + self.check_eps:
raise Exception("""Мы вышли за границы разгона - смыкание FE, вообще не знаю как так получилось""")
t2 = max(0, (s - self.a_max_1 * t1 ** 2 / 2) / (self.a_max_1 * t1))
return t1, t2
def calcFirstOpen(self, T : float, s : float) -> tuple[float, float]:
t1 = T / 2 - sqrt(max(0, T**2 - 4 * s / self.a_max_1)) / 2
t1 = min(t1, self.v_max_1 / self.a_max_1)
t2 = max(0, (s - self.a_max_1*t1**2/2) / (self.a_max_1*t1))
def calcFirstOpen(self, T: float, s: float) -> tuple[float, float]:
t1 = T / 2 - sqrt(max(0, T ** 2 - 4 * s / self.a_max_1)) / 2
if t1 > self.v_max_1 / self.a_max_1 + self.check_eps:
raise Exception("""Мы вышли за границы разгона - раскрытие FE, вообще не знаю как так получилось""")
t2 = max(0, (s - self.a_max_1 * t1 ** 2 / 2) / (self.a_max_1 * t1))
return t1, t2
def calcSecondOpen(self, T : float, s : float) -> tuple[float, float]:
t1 = T / 2 - sqrt(max(0, T**2 - 4 * s / self.a_max_2)) / 2
t1 = min(t1, self.v_max_2 / self.a_max_2)
t2 = max(0, (s - self.a_max_2*t1**2/2) / (self.a_max_2*t1))
def calcSecondOpen(self, T: float, s: float) -> tuple[float, float]:
t1 = T / 2 - sqrt(max(0, T ** 2 - 4 * s / self.a_max_2)) / 2
if t1 > self.v_max_2 / self.a_max_2 + self.check_eps:
raise Exception("""Мы вышли за границы разгона - раскрытие ME, вообще не знаю как так получилось""")
t2 = max(0, (s - self.a_max_2 * t1 ** 2) / (self.a_max_2 * t1))
return t1, t2
def calcSecondClose(self, T : float, s : float) -> tuple[float, float]:
t1 = T / 2 - sqrt(max(0, T**2 - 4 * s / self.a_max_2)) / 2
t1 = min(t1, self.v_max_2 / self.a_max_2)
t2 = max(0, (s - self.a_max_2*t1**2/2) / (self.a_max_2*t1))
def calcSecondClose(self, T: float, s: float) -> tuple[float, float]:
t1 = T / 2 - sqrt(max(0, T ** 2 - 4 * s / self.a_max_2)) / 2
if t1 > self.v_max_2 / self.a_max_2 + self.check_eps:
raise Exception("""Мы вышли за границы разгона - смыкание ME, вообще не знаю как так получилось""")
t2 = max(0, (s - self.a_max_2 * t1 ** 2) / (self.a_max_2 * t1))
return t1, t2
def calcSecondOpenOffset(self, t1 : float, t2 : float, sq : float) -> float:
def calcSecondOpenOffset(self, t1: float, t2: float, sq: float) -> float:
s = sq * 1
offset = sqrt(2 * s / self.a_max_1)
@ -239,7 +246,7 @@ class OptTimeCalculator(AutoConfigClass):
if s > t2 * v1:
s -= t2 * v1
offset = 2*t1 + t2 - sqrt(t1**2 - 2*s / self.a_max_1)
offset = 2 * t1 + t2 - sqrt(t1 ** 2 - 2 * s / self.a_max_1)
else:
offset = t1 + s / v1
return offset

43
src/testAlgo.py Normal file
View File

@ -0,0 +1,43 @@
from src.OptAlgorithm.OptAlgorithm import OptAlgorithm
from src.utils import read_json
from matplotlib import pyplot as plt, use
from numpy import cos, sin, sqrt, cbrt, arcsin, linspace, array
if __name__ == "__main__":
tq = 1
ts = linspace(0, tq, 200000)
operator_params = read_json("params/operator_params.json")
system_params = read_json("params/system_params.json")
non_array_operator_params = {}
i = 1
for key, value in operator_params.items():
if hasattr(value, "__len__"):
if len(value) > i:
non_array_operator_params[key] = value[i]
else:
non_array_operator_params[key] = value[0]
else:
non_array_operator_params[key] = value
non_array_system_params = {}
for key, value in system_params.items():
if hasattr(value, "__len__"):
if len(value) > i:
non_array_system_params[key] = value[i]
else:
non_array_system_params[key] = value[0]
else:
non_array_system_params[key] = value
opt = OptAlgorithm(non_array_operator_params, non_array_system_params)
Xs = array([opt.getVar("X1", t) for t in ts])
plt.plot(ts, Xs)
plt.show()