def: добавлена возможность отрисовывать несколько точек подряд

This commit is contained in:
Andrew 2024-11-12 16:52:40 +03:00
parent b6b7de2fcb
commit 8ad4fdd355
9 changed files with 119 additions and 120 deletions

View File

@ -1,16 +1,16 @@
{
"dist_open_start_1" : 0.005,
"dist_open_start_2" : 0.005,
"dist_open_after_1" : 0.006,
"dist_open_after_2" : 0.006,
"dist_open_end_1" : 0.010,
"dist_open_end_2" : 0.050,
"dist_close_end_1" : 0.005,
"dist_close_end_2" : 0.005,
"time_wielding" : 1,
"time_command" : 0.060,
"time_robot_movement" : 0.2,
"object_thickness" : 4.5e-3,
"force_target" : 5000,
"force_capture" : 500
"dist_open_start_1": 0.005,
"dist_open_start_2": 0.005,
"dist_open_after_1": 0.006,
"dist_open_after_2": 0.006,
"dist_open_end_1": 0.01,
"dist_open_end_2": 0.05,
"dist_close_end_1": 0.005,
"dist_close_end_2": 0.005,
"time_wielding": 1,
"time_command": 0.06,
"time_robot_movement": 0.2,
"object_thickness": 0.0045,
"force_target": 5000,
"force_capture": 500
}

View File

@ -21,7 +21,9 @@ class app:
self.system_params = read_json("params/system_params.json")
self.parser = DiagramParser(system_config=self.system_params)
self.parser.setData("trace_samples/2024_11_08-19_30_52.csv")
self.parser.setData("")
#trace_samples/2024_11_08-19_30_52.csv
self.opt_algorithm = OptAlgorithm(operator_config=self.operator_params, system_config=self.system_params)
generator = Request(server_url='http://www.plantuml.com/plantuml/svg/')
@ -62,7 +64,7 @@ class app:
self.opt_algorithm = OptAlgorithm(operator_config=self.operator_params, system_config=self.system_params)
self.ideal_times = self._get_ideal_timings(self.opt_algorithm)
self.uml_creator.update_uml(system_config=self.system_params,
self.uml_creator.update_uml(operator_config=self.system_params,
ideal_time=self.ideal_times,
bool_dict=self.bool_dict,
float_dict=self.float_dict,

View File

@ -88,62 +88,68 @@ class PlotWindow:
self.p13.clear()
self.l13.clear()
if self.theor_mode:
timings = np.arange(20000)/10
else:
timings = self._plotRealData()
self._plotIdealData(timings)
if not self.theor_mode:
self._plotRealData()
self._form_idealdatGraph()
def _getIdealTimings(self):
data = self.opt.Ts
self.idealTime = [data['tclose'], data['tgrow'], self.opt.getMarkOpen(), data["tmovement"]]
self.WeldData = self.opt.calcPhaseGrow(self.idealTime[1])
def _form_idealdatGraph(self, times):
def _form_idealdatGraph(self):
if self.theor_mode:
closure_start = 0
compression_start = self.idealTime[0]*self.scaler
welding_start = sum(self.idealTime[:2])*self.scaler
opening_start = (sum(self.idealTime[:2])+ self.WeldTime)*self.scaler
opening_end = (sum(self.idealTime[:3])+ self.WeldTime)*self.scaler
else:
closure_start = self.timings_dict["closure"][0]*self.scaler
compression_start = self.timings_dict["compression"][0]*self.scaler
welding_start = self.timings_dict["welding"][0]*self.scaler
opening_start = self.timings_dict["opening"][0]*self.scaler
opening_end = self.timings_dict["opening"][1]*self.scaler
self.timings_dict["closure"] = [[0, self.idealTime[0]]]
self.timings_dict["compression"] = [[self.idealTime[0], sum(self.idealTime[:2])]]
self.timings_dict["welding"] = [[sum(self.idealTime[:2]), sum(self.idealTime[:2])+self.WeldTime]]
self.timings_dict["opening"] = [[sum(self.idealTime[:2])+self.WeldTime, sum(self.idealTime[:3])+self.WeldTime]]
self.idealPhase0 = closure_start + (self.idealTime[0])*self.scaler #Подъезд
self.idealPhase1 = compression_start + (self.idealTime[1])*self.scaler #Сжатие
self.idealPhase2 = welding_start + (self.WeldTime)*self.scaler #Сварка
self.idealPhase3 = opening_start + (self.idealTime[2])*self.scaler #Разъезд
self.idealPhase4 = opening_end + (self.idealTime[3])*self.scaler #Последнее смыкание
delta = 10 #points_per_ms
for key, items in self.timings_dict.items():
if key == 'closure':
ideal_time = self.idealTime[0]
calc = self.opt.calcPhaseClose
color = qts.RGBA[0]
elif key == 'compression':
ideal_time = self.idealTime[1]
calc = self.opt.calcPhaseGrow
color = qts.RGBA[1]
elif key == 'welding':
ideal_time = self.WeldTime
calc = self._returnWeldData
color = qts.RGBA[2]
elif key == 'opening':
calc = self.opt.calcPhaseOpen
ideal_time = self.idealTime[2]
ideal_closure = self.idealTime[3]
color = qts.RGBA[3]
color_closure = qts.RGBA[4]
for item in items:
item_data = []
time_data = []
for i in range(0, int(ideal_time*self.scaler)*delta):
time = i/delta
item_data.append(calc(time/self.scaler))
time_data.append(time+item[0]*self.scaler)
#print (item_data[-1], time_data[-1])
self._plotIdealData(np.array(time_data), np.array(item_data).T)
self._addBackgroundSplitter([item[0]*self.scaler,item[0]*self.scaler + time], color)
if key == 'opening':
item_data = []
time_data = []
for i in range(0, int(ideal_closure*self.scaler)*delta):
time = i/delta
item_data.append(self.opt.calcPhaseMovement(time/self.scaler))
time_data.append(time+item[1]*self.scaler)
self._plotIdealData(np.array(time_data), np.array(item_data).T)
self._addBackgroundSplitter([item[1]*self.scaler,item[1]*self.scaler + time], color_closure)
def _returnWeldData(self, _):
return self.WeldData
self.x_splitter = np.array([[closure_start, self.idealPhase0],
[compression_start, self.idealPhase1],
[welding_start, self.idealPhase2],
[opening_start, self.idealPhase3],
[opening_end, self.idealPhase4]])
data = []
for time in times:
if time >= closure_start and time <= self.idealPhase0:
x_fe, x_me, v_fe, v_me, f = self.opt.calcPhaseClose((time-closure_start)/self.scaler)
elif time >= compression_start and time <= self.idealPhase1:
x_fe, x_me, v_fe, v_me, f = self.opt.calcPhaseGrow((time-compression_start)/self.scaler)
elif time >= welding_start and time <= self.idealPhase2:
x_fe, x_me, v_fe, v_me, f = data[-1]
elif time >= opening_start and time <= self.idealPhase3:
x_fe, x_me, v_fe, v_me, f = self.opt.calcPhaseOpen((time-opening_start)/self.scaler)
elif time >= opening_end and time <= self.idealPhase4:
x_fe, x_me, v_fe, v_me, f = self.opt.calcPhaseMovement((time-opening_end)/self.scaler)
else:
if data:
x_fe, x_me, v_fe, v_me, f = data[-1]
else:
x_fe, x_me, v_fe, v_me, f = 0,0,0,0,0
data.append([x_fe, x_me, v_fe, v_me, f])
data = np.array(data).T
return data
def _plotRealData(self):
@ -162,40 +168,37 @@ class PlotWindow:
self.l13.addItem(curve, key)
return dat[0]
def _plotIdealData(self, times):
data = self._form_idealdatGraph(times)
x_fe = pg.PlotDataItem(times, data[0]*1000, pen=pg.mkPen(color=qts.colors[8], width=2), name='x_fe', autoDownsample=True, downsample=True)
x_me = pg.PlotDataItem(times, data[1]*1000, pen=pg.mkPen(color=qts.colors[9], width=2), name='x_me', autoDownsample=True, downsample=True)
v_fe = pg.PlotDataItem(times, data[2]*1000, pen=pg.mkPen(color=qts.colors[8], width=2), name='v_fe', autoDownsample=True, downsample=True)
v_me = pg.PlotDataItem(times, data[3]*1000, pen=pg.mkPen(color=qts.colors[9], width=2), name='v_me', autoDownsample=True, downsample=True)
f = pg.PlotDataItem(times, data[4], pen=pg.mkPen(color=qts.colors[8], width=2), name='f', autoDownsample=True, downsample=True)
def _plotIdealData(self, time, data):
x_fe = pg.PlotDataItem(time, data[0]*1000, pen=pg.mkPen(color=qts.colors[8], width=2), name='x_fe', autoDownsample=True, downsample=True)
x_me = pg.PlotDataItem(time, data[1]*1000, pen=pg.mkPen(color=qts.colors[9], width=2), name='x_me', autoDownsample=True, downsample=True)
v_fe = pg.PlotDataItem(time, data[2]*1000, pen=pg.mkPen(color=qts.colors[8], width=2), name='v_fe', autoDownsample=True, downsample=True)
v_me = pg.PlotDataItem(time, data[3]*1000, pen=pg.mkPen(color=qts.colors[9], width=2), name='v_me', autoDownsample=True, downsample=True)
f = pg.PlotDataItem(time, data[4], pen=pg.mkPen(color=qts.colors[8], width=2), name='f', autoDownsample=True, downsample=True)
self.p11.addItem(f)
self.l11.addItem(f, 'Ideal force')
#self.l11.addItem(f, 'Ideal force')
self.p12.addItem(x_fe)
self.l12.addItem(x_fe, 'FE POS')
#self.l12.addItem(x_fe, 'FE POS')
self.p12.addItem(x_me)
self.l12.addItem(x_me, 'ME POS')
#self.l12.addItem(x_me, 'ME POS')
self.p13.addItem(v_fe)
self.l13.addItem(v_fe, 'FE VEL')
#self.l13.addItem(v_fe, 'FE VEL')
self.p13.addItem(v_me)
self.l13.addItem(v_me, 'ME VEL')
self._addBackgroundSplitter()
self._addEquidistances(times, data)
#self.l13.addItem(v_me, 'ME VEL')
#self._addBackgroundSplitter()
#self._addEquidistances(time, data)
def _addBackgroundSplitter(self):
def _addBackgroundSplitter(self, x, color):
alpha = self.alpha
y01 = np.array([10000, 10000])
y0_1 = np.array([-10000, -10000])
for i, _ in enumerate(self.x_splitter):
a01 = pg.PlotDataItem(_, y01, pen=pg.mkPen(color=qts.colors[8], width=2), name=' ')
a0_1 = pg.PlotDataItem(_, y0_1, pen=pg.mkPen(color=qts.colors[8], width=2), name=' ')
bg1 = pg.FillBetweenItem(a01, a0_1, qts.RGBA[i]+(alpha,))
bg2 = pg.FillBetweenItem(a01, a0_1, qts.RGBA[i]+(alpha,))
bg3 = pg.FillBetweenItem(a01, a0_1, qts.RGBA[i]+(alpha,))
a01 = pg.PlotDataItem(x, y01, pen=pg.mkPen(color=qts.colors[8], width=2), name=' ')
a0_1 = pg.PlotDataItem(x, y0_1, pen=pg.mkPen(color=qts.colors[8], width=2), name=' ')
bg1 = pg.FillBetweenItem(a01, a0_1, color+(alpha,))
bg2 = pg.FillBetweenItem(a01, a0_1, color+(alpha,))
bg3 = pg.FillBetweenItem(a01, a0_1, color+(alpha,))
self.p11.addItem(bg1)
self.p12.addItem(bg2)
self.p13.addItem(bg3)
@ -216,8 +219,6 @@ class PlotWindow:
self.p11.addItem(c1)
def _makeFiller(self, x1, y1, x2, y2, color):
alpha = self.alpha
eq1 = pg.PlotDataItem(x1, y1, pen=pg.mkPen(color='#000000', width=1))

View File

@ -7,32 +7,22 @@ class UMLCreator:
def _build_data(self):
real_data = []
ideal_data = []
if not self.theor_mode:
closure = self.timings_dict["closure"]
compression = self.timings_dict["compression"]
welding = self.timings_dict["welding"]
opening = self.timings_dict["opening"]
real_data = [
[closure[0]*self.scaler, 'closure #green'],
[closure[1]*self.scaler, '{-}'],
[compression[0]*self.scaler+0.0001, 'compression #green'],
[compression[1]*self.scaler, '{-}'],
[welding[0]*self.scaler+0.0001, 'welding #green'],
[welding[1]*self.scaler, '{-}'],
[opening[0]*self.scaler+0.0001, 'opening #green'],
[opening[1]*self.scaler, '{-}'],
]
ideal_data = [
[closure[0] * self.scaler, 'closure #yellow'],
[(self._ideal_time[0]+closure[0]) * self.scaler, '{-}'],
[compression[0] * self.scaler, 'compression #yellow'],
[(compression[0] + self._ideal_time[1]) * self.scaler, '{-}'],
[welding[0] * self.scaler, 'welding #yellow'],
[(welding[0] + self.WeldTime)*self.scaler, '{-}'],
[opening[0] * self.scaler, 'opening #yellow'],
[(opening[0] + self._ideal_time[2]) * self.scaler, '{-}'],
]
for key, items in self.timings_dict.items():
if key == 'closure': ideal_time = self._ideal_time[0]
elif key == 'compression': ideal_time = self._ideal_time[1]
elif key == 'welding': self.WeldTime
elif key == 'opening': ideal_time = self._ideal_time[2]
for item in items:
real_data.append([item[0]*self.scaler+0.0001, str(key) + '#green'])
real_data.append([item[1]*self.scaler, '{-}'])
ideal_data.append([item[0]*self.scaler+0.0001, str(key) + '#yellow'])
ideal_data.append([(item[0]+ideal_time)*self.scaler, '{-}'])
else:
real_data = []

View File

@ -28,10 +28,16 @@ class DiagramParser:
if type (self.data[signalName].iloc[0]) == np.float64:
self.floatDict[signalName] = self._getFloatChanges(signalName)
self.timingsDict["closure"] = [self.boolDict[self.signals[0]][1][0], self.boolDict[self.signals[0]][2][0]]
self.timingsDict["compression"] = [self.boolDict[self.signals[1]][1][0], self.boolDict[self.signals[1]][2][0]]
self.timingsDict["welding"] = [self.boolDict[self.signals[2]][1][0], self.boolDict[self.signals[2]][2][0]]
self.timingsDict["opening"] = [self.boolDict[self.signals[3]][1][0], self.boolDict[self.signals[3]][2][0]]
for key, items in self.boolDict.items():
if key == self.signals[0]: name = "closure"
elif key == self.signals[1]: name = "compression"
elif key == self.signals[2]: name = "welding"
elif key == self.signals[3]: name = "opening"
self.timingsDict[name] = []
for i, item in enumerate(items):
if item[1] == 'high':
self.timingsDict[name].append([items[i][0], items[i+1][0]])
def getBoolDict (self) -> dict:
return self.boolDict