WeldingSpotPerformance/src/gui/plotter.py

191 lines
8.8 KiB
Python
Raw Normal View History

import pandas as pd
from PyQt5.QtWidgets import QWidget, QVBoxLayout, QLabel
import pyqtgraph as pg
import numpy as np
from numpy import floating
from typing import Optional, Any, NamedTuple
from src.utils.base.base import BasePlotWidget, BasePointPassportFormer, BaseIdealDataBuilder
class idealDataBuilder(BaseIdealDataBuilder):
def get_closingDF(self) -> pd.DataFrame:
return self._get_data(self.Ts['tclose'], self.calcPhaseClose)
def get_compressionDF(self) -> pd.DataFrame:
return self._get_data(self.Ts['tgrow'], self.calcPhaseGrow)
def get_openingDF(self) -> pd.DataFrame:
return self._get_data(self.getMarkOpen(), self.calcPhaseOpen)
def get_oncomingDF(self) -> pd.DataFrame:
return self._get_data(self.Ts['tmovement'], self.calcPhaseMovement)
def get_weldingDF(self) -> pd.DataFrame:
data = []
X1, X2, V1, V2, F = self.calcPhaseGrow(self.Ts['tgrow'])
data.append({"time":0, "Posicion FE":X1,"Posicion ME":X2, "Rotor Speed FE":V1, "Rotor Speed ME":V2, "Force":F})
data.append({"time":self.welding_time, "Posicion FE":X1,"Posicion ME":X2, "Rotor Speed FE":V1, "Rotor Speed ME":V2, "Force":F})
return pd.DataFrame(data)
def get_ideal_timings(self) -> list[float, float, float, float]:
data = self.Ts
ideal_timings = [data['tclose'], data['tgrow'], self.welding_time, self.getMarkOpen()] # TODO: add data['tmovement'], Oncoming не учитывается в производительности
return ideal_timings
class ProcessStage(NamedTuple):
mean_value: floating[Any]
start_index: int
finish_index: int
class PlotWidget(BasePlotWidget, BasePointPassportFormer):
def _create_curve_ideal(self,
stage: str,
signal: str,
start_timestamp: float,
finish_timestamp: float) -> Optional[pg.PlotDataItem]:
data = self._stage_ideals[stage]
if start_timestamp and finish_timestamp:
plot = pg.PlotDataItem(x=start_timestamp+data["time"], y=data[signal["name"]], pen=signal["pen"])
return plot
return None
def _create_stage_region(self,
stage: str,
start_timestamp: float,
finish_timestamp: float) -> Optional[pg.LinearRegionItem]:
if start_timestamp and finish_timestamp:
region = pg.LinearRegionItem([start_timestamp, finish_timestamp], movable=False)
region.setBrush(pg.mkBrush(self._stage_colors[stage]))
return region
return None
@staticmethod
def _init_plot_widget(title: str) -> tuple[pg.PlotWidget, pg.LegendItem]:
plot_widget = pg.PlotWidget(title=title)
plot_widget.showGrid(x=True, y=True)
legend = pg.LegendItem((80, 60), offset=(70, 20))
legend.setParentItem(plot_widget.graphicsItem())
return plot_widget, legend
def get_stage_info(self,
stage: str,
dataframe: pd.DataFrame,
signal_name: str) -> Optional[ProcessStage]:
if stage in self._stages:
stage_diff = np.diff(dataframe[stage])
start_index = np.where(stage_diff == 1)[0]
finish_index = np.where(stage_diff == -1)[0]
data = dataframe[signal_name] if signal_name in dataframe.columns.tolist() else []
if data.size and start_index.size:
start = start_index[0]
finish = finish_index[0] if finish_index.size else (len(data) - 1)
data_slice = data[start:finish]
mean = np.mean(data_slice)
return ProcessStage(mean_value=mean, start_index=int(start), finish_index=int(finish))
return None
def _build_widget(self, dataframe: pd.DataFrame) -> QWidget:
widget = QWidget()
layout = QVBoxLayout()
time_axis = dataframe["time"]
dataframe_headers = dataframe.columns.tolist()
for channel, description in self._plt_channels.items():
plot_widget, legend = self._init_plot_widget(title=channel)
settings = description["Settings"]
if (settings["stages"] or settings["performance"]) and all([stage in dataframe_headers for stage in self._stages]):
events = self._filter_events(time_axis, dataframe)
point_quantity = len(events[self._clear_stage][0])
if settings["stages"]:
for stage in self._stages:
start_t, end_t = events[stage]
for i in range(len(start_t)):
region = self._create_stage_region(stage, start_t[i], end_t[i])
if region:
plot_widget.addItem(region)
for signal in description["Ideal_signals"]:
ideal_plot = self._create_curve_ideal(stage, signal, start_t[i], end_t[i])
if ideal_plot:
plot_widget.addItem(ideal_plot)
if settings["performance"]:
ideal_delta = self._opt.get_cycle_time()
delta = np.zeros(point_quantity)
for stage in self._stages:
try:
start_stage, stop_stage = events[stage]
delta += np.array(stop_stage)-np.array(start_stage)
except: print("Signal ", stage, " is abnormal..." )
performance_list = ideal_delta/delta*100
performance_label = QLabel(f"Performance: best = {performance_list.max()} %, worse = {performance_list.min()} %, average = {performance_list.mean()}")
layout.addWidget(performance_label)
if settings["zoom"]:
if max(time_axis) < 5.0:
stages = [self.get_stage_info("Welding",
dataframe,
signal["name"]) for signal in description["Real_signals"]]
if stages:
means_raw = [stage.mean_value for stage in stages]
mean = max(means_raw)
start = time_axis[stages[0].start_index]
finish = time_axis[stages[0].finish_index]
overshoot = pg.BarGraphItem(x0=0,
y0=mean - mean * 0.05,
height=mean * 0.05 * 2,
width=start,
brush=pg.mkBrush([0, 250, 0, 100]))
plot_widget.addItem(overshoot)
stable = pg.BarGraphItem(x0=start,
y0=mean - mean * 0.015,
height=mean * 0.015 * 2,
width=finish - start,
brush=pg.mkBrush([0, 250, 0, 100]))
plot_widget.addItem(stable)
plot_widget.setYRange(mean - 260, mean + 260)
plot_widget.setInteractive(False)
else:
max_value = min([max(dataframe[signal["name"]]) for signal in description["Real_signals"]])
region = pg.LinearRegionItem([max_value - max_value * 0.015,
max_value + max_value * 0.015],
movable=False,
orientation="horizontal")
region.setBrush(pg.mkBrush([0, 250, 0, 100]))
plot_widget.setYRange(max_value - 200, max_value + 200)
plot_widget.setXRange(3.5, 4.5)
plot_widget.addItem(region)
plot_widget.setInteractive(False)
for signal in description["Real_signals"]:
if signal["name"] in dataframe_headers:
plot = plot_widget.plot(time_axis, dataframe[signal["name"]], pen=signal["pen"])
legend.addItem(plot, signal["name"])
layout.addWidget(plot_widget)
widget.setLayout(layout)
return widget
def build(self, data: list[pd.DataFrame]) -> None:
widgets = [self._build_widget(data_sample) for data_sample in data]
self._mediator.notify(self, widgets)
def update_settings(self, params: list[dict]):
self._initIdealBuilder(idealDataBuilder=idealDataBuilder, params=params)