2025-01-23 17:33:17 +03:00
|
|
|
import traceback
|
|
|
|
|
import sys
|
|
|
|
|
from typing import Optional, Any
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import pandas as pd
|
|
|
|
|
from loguru import logger
|
|
|
|
|
|
2025-01-23 18:13:44 +03:00
|
|
|
from base.base import BasePointPassportFormer, BaseIdealDataBuilder, PointPassport, GraphicPassport, Settings
|
2025-01-23 17:33:17 +03:00
|
|
|
|
|
|
|
|
|
|
|
|
|
class PassportFormer(BasePointPassportFormer):
|
|
|
|
|
|
|
|
|
|
def form_passports(self, data: list[pd.DataFrame]) -> list[GraphicPassport]:
|
|
|
|
|
try:
|
|
|
|
|
return_data = [self._build_graphic_passport(dataframe) for dataframe in data]
|
|
|
|
|
except:
|
|
|
|
|
# TODO: обработка исключений!!!
|
|
|
|
|
tb = sys.exc_info()[2]
|
|
|
|
|
# TODO: Нормальные сообщения в лог!
|
|
|
|
|
tbinfo = traceback.format_tb(tb)[0]
|
|
|
|
|
pymsg = "Traceback info:\n" + tbinfo + "\nError Info:\n" + str(sys.exc_info()[1])
|
|
|
|
|
logger.error(pymsg)
|
|
|
|
|
return_data = []
|
|
|
|
|
finally:
|
|
|
|
|
self._mediator.notify(self, return_data)
|
|
|
|
|
|
2025-01-23 18:13:44 +03:00
|
|
|
def update_settings(self, settings: Settings):
|
|
|
|
|
self._settings = settings
|
2025-01-23 17:33:17 +03:00
|
|
|
|
|
|
|
|
@staticmethod
|
|
|
|
|
def _find_indexes(signal: str,
|
|
|
|
|
dataframe: pd.DataFrame) -> tuple[np.ndarray, np.ndarray]:
|
|
|
|
|
stage_diff = np.diff(dataframe[signal])
|
|
|
|
|
start_idx = np.where(stage_diff == 1)
|
|
|
|
|
finish_idx = np.where(stage_diff == -1)
|
|
|
|
|
return start_idx[0], finish_idx[0]
|
|
|
|
|
|
|
|
|
|
def _find_events(self,
|
|
|
|
|
signal: str,
|
|
|
|
|
times:pd.Series,
|
|
|
|
|
dataframe: pd.DataFrame) -> tuple[list[float], list[float]]:
|
|
|
|
|
start_idx, finish_idx = self._find_indexes(signal, dataframe)
|
|
|
|
|
|
|
|
|
|
if len(start_idx) > 0 and len(finish_idx) > 0 and start_idx[0] > finish_idx[0]:
|
|
|
|
|
start_idx = np.insert(start_idx, 0, 0)
|
|
|
|
|
start_list = times.iloc[start_idx].tolist() if len(start_idx) > 0 else []
|
|
|
|
|
end_list = times.iloc[finish_idx].tolist() if len(finish_idx) > 0 else []
|
|
|
|
|
if len(start_list) - len(end_list) == 1:
|
|
|
|
|
end_list.append(float(times.iloc[-1]))
|
|
|
|
|
|
|
|
|
|
return start_list, end_list
|
|
|
|
|
|
|
|
|
|
def _filter_events(self,
|
|
|
|
|
times: pd.Series,
|
|
|
|
|
dataframe: pd.DataFrame) -> tuple[dict[str, list[list[float]]], int]:
|
|
|
|
|
events = {}
|
|
|
|
|
point_quantity = 0
|
|
|
|
|
if self._clear_stage in self._stages:
|
|
|
|
|
start_list, end_list = self._find_events(self._clear_stage, times, dataframe)
|
|
|
|
|
point_quantity = len(start_list)
|
|
|
|
|
if point_quantity == 0:
|
|
|
|
|
#TODO: добавить обработку исключения
|
|
|
|
|
return []
|
|
|
|
|
|
|
|
|
|
for stage in self._stages:
|
|
|
|
|
start_list, end_list = self._find_events(stage, times, dataframe)
|
|
|
|
|
temp = min([len(start_list), len(end_list)])
|
|
|
|
|
if temp < point_quantity:
|
|
|
|
|
print ("cant find enough", stage)
|
|
|
|
|
start_list += [0]*(point_quantity - temp)
|
|
|
|
|
end_list += [1]*(point_quantity - temp)
|
|
|
|
|
|
|
|
|
|
events[stage] = [start_list, end_list]
|
|
|
|
|
return events, point_quantity
|
|
|
|
|
|
|
|
|
|
def _build_ideal_data(self,
|
|
|
|
|
idealDataBuilder: Optional[BaseIdealDataBuilder] = None,
|
2025-01-23 18:13:44 +03:00
|
|
|
point_settings: Settings = None) -> dict:
|
|
|
|
|
self.opt_algorithm = idealDataBuilder(point_settings)
|
2025-01-23 17:33:17 +03:00
|
|
|
stage_ideals = {
|
|
|
|
|
"Closing": self._opt_algorithm.get_closingDF(),
|
|
|
|
|
"Squeeze": self._opt_algorithm.get_compressionDF(),
|
|
|
|
|
"Welding": self._opt_algorithm.get_weldingDF(),
|
|
|
|
|
"Relief": self._opt_algorithm.get_openingDF(),
|
|
|
|
|
"Oncomming": self._opt_algorithm.get_oncomingDF(),
|
|
|
|
|
"Ideal cycle": self._opt_algorithm.get_cycle_time(),
|
|
|
|
|
"Ideal timings": self._opt_algorithm.get_ideal_timings()
|
|
|
|
|
}
|
|
|
|
|
return stage_ideals
|
|
|
|
|
|
|
|
|
|
def _generate_cache_key(self,
|
2025-01-23 18:13:44 +03:00
|
|
|
point_settings:Settings) -> tuple[tuple[tuple[str, Any], ...], tuple[tuple[str, Any], ...]]:
|
2025-01-23 17:33:17 +03:00
|
|
|
"""
|
2025-01-23 18:13:44 +03:00
|
|
|
Преобразует point_settings в хешируемый ключ для кэша.
|
2025-01-23 17:33:17 +03:00
|
|
|
"""
|
|
|
|
|
# Преобразуем словари в отсортированные кортежи пар ключ-значение
|
|
|
|
|
operator_tuple = frozenset((key, value)
|
2025-01-23 18:13:44 +03:00
|
|
|
for key, value in point_settings.operator.items()
|
2025-01-23 17:33:17 +03:00
|
|
|
if str(key) in self._OptAlgorithm_operator_params)
|
|
|
|
|
|
|
|
|
|
system_tuple = frozenset((key, value)
|
2025-01-23 18:13:44 +03:00
|
|
|
for key, value in point_settings.system.items()
|
2025-01-23 17:33:17 +03:00
|
|
|
if str(key) in self._OptAlgorithm_system_params)
|
|
|
|
|
return (operator_tuple, system_tuple)
|
|
|
|
|
|
|
|
|
|
def _build_graphic_passport(self, dataframe: pd.DataFrame) -> GraphicPassport:
|
|
|
|
|
|
|
|
|
|
if dataframe is not None:
|
|
|
|
|
events, point_quantity = self._filter_events(dataframe["time"], dataframe)
|
|
|
|
|
if point_quantity == 0:
|
|
|
|
|
return []
|
|
|
|
|
else:
|
|
|
|
|
events = None
|
2025-01-23 18:13:44 +03:00
|
|
|
key = list(self._settings.operator.keys())[0]
|
|
|
|
|
point_quantity = len(self._settings.operator[key])
|
2025-01-23 17:33:17 +03:00
|
|
|
|
|
|
|
|
graphic_passport = GraphicPassport()
|
|
|
|
|
graphic_passport.dataframe = dataframe
|
|
|
|
|
graphic_passport.points_pocket = []
|
2025-01-23 18:13:44 +03:00
|
|
|
system_settings = {key: value[0] for key, value in self._settings.system.items()}
|
2025-01-23 17:33:17 +03:00
|
|
|
graphic_passport.useful_data = self._form_graphic_useful_data(system_settings)
|
|
|
|
|
|
|
|
|
|
for i in range(point_quantity):
|
2025-01-23 18:13:44 +03:00
|
|
|
point_settings = Settings()
|
|
|
|
|
point_settings.operator = self._get_operator_settings_part(i)
|
|
|
|
|
point_settings.system = system_settings
|
2025-01-23 17:33:17 +03:00
|
|
|
|
|
|
|
|
point_passport = PointPassport()
|
2025-01-23 18:13:44 +03:00
|
|
|
point_passport.ideal_data = self._form_point_ideal_data(point_settings)
|
|
|
|
|
point_passport.useful_data = self._form_point_useful_data(point_settings.operator)
|
2025-01-23 17:33:17 +03:00
|
|
|
point_passport.timeframe, point_passport.events = self._form_point_events(events, i)
|
|
|
|
|
|
|
|
|
|
graphic_passport.points_pocket.append(point_passport)
|
|
|
|
|
return graphic_passport
|
|
|
|
|
|
|
|
|
|
def _form_graphic_useful_data(self, system_settings:dict) -> dict:
|
2025-01-23 18:13:44 +03:00
|
|
|
tesla_time = sum(self._settings.operator.get("Tesla summary time", []))
|
2025-01-23 17:33:17 +03:00
|
|
|
useful_data = {"tesla_time": tesla_time,
|
|
|
|
|
"range_ME": system_settings["Range ME, mm"],
|
|
|
|
|
"k_hardness": system_settings["k_hardness_1"]
|
|
|
|
|
}
|
|
|
|
|
return useful_data
|
|
|
|
|
|
|
|
|
|
def _form_point_useful_data(self, operator_settings:dict) -> dict:
|
|
|
|
|
useful_data = {"thickness": operator_settings["object_thickness"],
|
|
|
|
|
"L2": operator_settings["distance_l_2"],
|
|
|
|
|
"force": operator_settings["force_target"]}
|
|
|
|
|
return useful_data
|
|
|
|
|
|
2025-01-23 18:13:44 +03:00
|
|
|
def _form_point_ideal_data(self, point_settings:Settings) -> dict:
|
|
|
|
|
cache_key = self._generate_cache_key(point_settings)
|
2025-01-23 17:33:17 +03:00
|
|
|
ideal_data = self._ideal_data_cashe.get(cache_key,
|
2025-01-23 18:13:44 +03:00
|
|
|
self._build_ideal_data(idealDataBuilder=IdealDataBuilder, params=point_settings))
|
2025-01-23 17:33:17 +03:00
|
|
|
self._ideal_data_cashe[cache_key] = ideal_data
|
|
|
|
|
return ideal_data
|
|
|
|
|
|
|
|
|
|
def _get_operator_settings_part(self, idx:int) -> dict:
|
|
|
|
|
operator_settings = {
|
|
|
|
|
key: (value[idx] if idx < len(value) else value[0])
|
2025-01-23 18:13:44 +03:00
|
|
|
for key, value in self._settings.operator.items()
|
2025-01-23 17:33:17 +03:00
|
|
|
}
|
|
|
|
|
return operator_settings
|
|
|
|
|
|
|
|
|
|
def _form_point_events(self, events:dict, idx) -> list:
|
|
|
|
|
timeframe, point_events = None, None
|
|
|
|
|
if events is not None:
|
|
|
|
|
idx_shift = idx+1 if events[self._stages[-1]][0][0] == 0 else idx
|
|
|
|
|
timeframe = [events[self._stages[0]][0][idx], events[self._stages[-1]][1][idx_shift]]
|
|
|
|
|
point_events = {key: [value[0][idx], value[1][idx]] for key, value in events.items()}
|
2025-01-23 18:13:44 +03:00
|
|
|
return timeframe, point_events
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class IdealDataBuilder(BaseIdealDataBuilder):
|
|
|
|
|
|
|
|
|
|
def get_closingDF(self) -> pd.DataFrame:
|
|
|
|
|
return self._get_data(self.Ts['tclose'], self.calcPhaseClose)
|
|
|
|
|
|
|
|
|
|
def get_compressionDF(self) -> pd.DataFrame:
|
|
|
|
|
return self._get_data(self.Ts['tgrow'], self.calcPhaseGrow)
|
|
|
|
|
|
|
|
|
|
def get_openingDF(self) -> pd.DataFrame:
|
|
|
|
|
return self._get_data(self.getMarkOpen(), self.calcPhaseOpen)
|
|
|
|
|
|
|
|
|
|
def get_oncomingDF(self) -> pd.DataFrame:
|
|
|
|
|
return self._get_data(self.Ts['tmovement'], self.calcPhaseMovement)
|
|
|
|
|
|
|
|
|
|
def get_weldingDF(self) -> pd.DataFrame:
|
|
|
|
|
data = []
|
|
|
|
|
X1, X2, V1, V2, F = self.calcPhaseGrow(self.Ts['tgrow']-0.0001)
|
|
|
|
|
X1, X2, V1, V2 = X1*1000, X2*1000, V1*1000, V2*1000
|
|
|
|
|
data.append({
|
|
|
|
|
"time":0,
|
|
|
|
|
"Position FE":X1,
|
|
|
|
|
"Position ME":X2,
|
|
|
|
|
"Rotor Speed FE":V1,
|
|
|
|
|
"Rotor Speed ME":V2,
|
|
|
|
|
"Force":F
|
|
|
|
|
})
|
|
|
|
|
data.append({
|
|
|
|
|
"time":self.welding_time,
|
|
|
|
|
"Position FE":X1,
|
|
|
|
|
"Position ME":X2,
|
|
|
|
|
"Rotor Speed FE":V1,
|
|
|
|
|
"Rotor Speed ME":V2,
|
|
|
|
|
"Force":F
|
|
|
|
|
})
|
|
|
|
|
return pd.DataFrame(data)
|
|
|
|
|
|
|
|
|
|
def get_ideal_timings(self) -> list[float]:
|
|
|
|
|
data = self.Ts
|
|
|
|
|
ideal_timings = [
|
|
|
|
|
data['tclose'],
|
|
|
|
|
data['tgrow'],
|
|
|
|
|
self.welding_time,
|
|
|
|
|
self.getMarkOpen(),
|
|
|
|
|
data['tmovement']
|
|
|
|
|
]
|
|
|
|
|
return ideal_timings
|
|
|
|
|
|
|
|
|
|
def _get_data(self, end_timestamp:float, func:function) -> pd.DataFrame:
|
|
|
|
|
data = []
|
|
|
|
|
for i in range (0, int(end_timestamp*self.mul)+1):
|
|
|
|
|
time = i/self.mul
|
|
|
|
|
X1, X2, V1, V2, F = func(time)
|
|
|
|
|
data.append({
|
|
|
|
|
"time":time,
|
|
|
|
|
"Position FE":X1*1000,
|
|
|
|
|
"Position ME":X2*1000,
|
|
|
|
|
"Rotor Speed FE":V1*1000,
|
|
|
|
|
"Rotor Speed ME":V2*1000,
|
|
|
|
|
"Force":F
|
|
|
|
|
})
|
|
|
|
|
X1, X2, V1, V2, F = func(end_timestamp)
|
|
|
|
|
data.append({
|
|
|
|
|
"time":end_timestamp,
|
|
|
|
|
"Position FE":X1*1000,
|
|
|
|
|
"Position ME":X2*1000,
|
|
|
|
|
"Rotor Speed FE":V1*1000,
|
|
|
|
|
"Rotor Speed ME":V2*1000,
|
|
|
|
|
"Force":F
|
|
|
|
|
})
|
|
|
|
|
return pd.DataFrame(data)
|